Tensor Completion via the CP Decomposition

被引:0
作者
Sanogo, Fatoumata [1 ]
Navasca, Carmeliza [1 ]
机构
[1] Univ Alabama Birmingham, Dept Math, Birmingham, AL 35294 USA
来源
2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2018年
关键词
CONVERGENCE; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new algorithm for tensor completion. The tensor completion problem is about finding the 'unknown tensor from a given a tensor with partially observed data. While most tensor completion methods use the Tucker model, our new approach uses the canonical polyadic decomposition model to reconstruct the unknown tensor. The unknown tensor is reconstructed by,finding the optimal factors through linear least squares and the singular vectors through a proximal algorithm of soft thresholding.
引用
收藏
页码:845 / 849
页数:5
相关论文
共 20 条
[1]   A scalable optimization approach for fitting canonical tensor decompositions [J].
Acar, Evrim ;
Dunlavy, Daniel M. ;
Kolda, Tamara G. .
JOURNAL OF CHEMOMETRICS, 2011, 25 (02) :67-86
[2]  
Acar Evrim, 2011, CHEMOMETRICS INTELLI
[3]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[4]  
[Anonymous], FDN TRENDS OPTIM, DOI DOI 10.1561/2400000003
[5]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[6]  
Bolte J., 2014, COMPUTER VISION IMAG, V146, P459
[7]   Linear Convergence of Iterative Soft-Thresholding [J].
Bredies, Kristian ;
Lorenz, Dirk A. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :813-837
[8]  
Bro R, 2000, P ICSLP
[9]  
Bro R., 1997, CHEMOMETRICS INTELLI
[10]   The Power of Convex Relaxation: Near-Optimal Matrix Completion [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2053-2080