Comparison of single-nucleotide polymorphisms and microsatellites in inference of population structure

被引:113
作者
Liu, NJ
Chen, L
Wang, S
Oh, CG
Zhao, HY [1 ]
机构
[1] Yale Univ, Dept Epidemiol & Publ Hlth, New Haven, CT 06520 USA
[2] Univ Alabama Birmingham, Dept Biostat, Birmingham, AL 35294 USA
[3] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[4] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
[5] Univ Med & Dent New Jersey, Dept Prevent Med, Dept Biostat, Newark, NJ 07101 USA
[6] Yale Univ, Dept Genet, New Haven, CT 06520 USA
关键词
D O I
10.1186/1471-2156-6-S1-S26
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-nucleotide polymorphisms (SNPs) are a class of attractive genetic markers for population genetic studies and for identifying genetic variations underlying complex traits. However, the usefulness and efficiency of SNPs in comparison to microsatellites in different scientific contexts, e.g., population structure inference or association analysis, still must be systematically evaluated through large empirical studies. In this article, we use the Collaborative Studies on Genetics of Alcoholism (COGA) data from Genetic Analysis Workshop 14 (GAW14) to compare the performance of microsatellites and SNPs in the whole human genome in the context of population structure inference. A total of 328 microsatellites and 15,840 SNPs are used to infer population structure in 236 unrelated individuals. We find that, on average, the informativeness of random microsatellites is four to twelve times that of random SNPs for various population comparisons, which is consistent with previous studies. Our results also indicate that for the combined set of microsatellites and SNPs, SNPs constitute the majority among the most informative markers and the use of these SNPs leads to better inference of population structure than the use of microsatellites. We also find that the inclusion of less informative markers may add noise and worsen the results.
引用
收藏
页数:5
相关论文
共 16 条
[1]  
Anderson EC, 2002, GENETICS, V160, P1217
[2]  
Falush D, 2003, GENETICS, V164, P1567
[3]   The International HapMap Project [J].
Gibbs, RA ;
Belmont, JW ;
Hardenbol, P ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Ch'ang, LY ;
Huang, W ;
Liu, B ;
Shen, Y ;
Tam, PKH ;
Tsui, LC ;
Waye, MMY ;
Wong, JTF ;
Zeng, CQ ;
Zhang, QR ;
Chee, MS ;
Galver, LM ;
Kruglyak, S ;
Murray, SS ;
Oliphant, AR ;
Montpetit, A ;
Hudson, TJ ;
Chagnon, F ;
Ferretti, V ;
Leboeuf, M ;
Phillips, MS ;
Verner, A ;
Kwok, PY ;
Duan, SH ;
Lind, DL ;
Miller, RD ;
Rice, JP ;
Saccone, NL ;
Taillon-Miller, P ;
Xiao, M ;
Nakamura, Y ;
Sekine, A ;
Sorimachi, K ;
Tanaka, T ;
Tanaka, Y ;
Tsunoda, T ;
Yoshino, E ;
Bentley, DR ;
Deloukas, P ;
Hunt, S ;
Powell, D ;
Altshuler, D ;
Gabriel, SB ;
Qiu, RZ .
NATURE, 2003, 426 (6968) :789-796
[4]   Inconsistencies between self-reported ethnicity and ethnicity recorded in a health maintenance organization [J].
Gomez, SL ;
Kelsey, JL ;
Glaser, SL ;
Lee, MM ;
Sidney, S .
ANNALS OF EPIDEMIOLOGY, 2005, 15 (01) :71-79
[5]   Control of confounding of genetic associations in stratified populations [J].
Hoggart, CJ ;
Parra, EJ ;
Shriver, MD ;
Bonilla, C ;
Kittles, RA ;
Clayton, DG ;
McKeigue, PM .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (06) :1492-1504
[6]  
Kruglyak L, 1996, AM J HUM GENET, V58, P1347
[7]   MICROSATELLITE ANALYSIS OF POPULATION-STRUCTURE IN CANADIAN POLAR BEARS [J].
PAETKAU, D ;
CALVERT, W ;
STIRLING, I ;
STROBECK, C .
MOLECULAR ECOLOGY, 1995, 4 (03) :347-354
[8]   Methods for high-density admixture mapping of disease genes [J].
Patterson, N ;
Hattangadi, N ;
Lane, B ;
Lohmueller, KE ;
Hafler, DA ;
Oksenberg, JR ;
Hauser, SL ;
Smith, MW ;
O'Brien, SJ ;
Altshuler, D ;
Daly, MJ ;
Reich, D .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (05) :979-1000
[9]  
Pritchard JK, 2000, GENETICS, V155, P945
[10]  
Risch N., 2002, GENOME BIOL, V3, DOI [10.1186/gb-2002-3-7-comment2007, DOI 10.1186/GB-2002-3-7-COMMENT2007, 10.1186/GB-2002-3-7-COMMENT2007]