Finite index theorems for iterated Galois groups of cubic polynomials

被引:13
作者
Bridy, Andrew [1 ]
Tucker, Thomas J. [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Rochester, Dept Math, Rochester, NY 14620 USA
基金
美国国家科学基金会;
关键词
Primary 37P15; Secondary 11G50; 11R32; 14G25; 37P05; 37P30;
D O I
10.1007/s00208-018-1670-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field or a function field. Let f is an element of K(x) be a rational function of degree d >= 2, and let beta is an element of P-1((K) over bar). For all n is an element of N boolean OR {infinity}, the Galois groups G(n)(beta) = Gal(K(f(-n)(beta))/K(beta)) embed into Aut(T-n), the automorphism group of the d-ary rooted tree of level n. A major problem in arithmetic dynamics is the arboreal finite index problem: determining when [Aut(T-infinity) : G(infinity)(beta)] < infinity. When f is a cubic polynomial and K is a function field of transcendence degree 1 over an algebraic extension of Q, we resolve this problem by proving a list of necessary and sufficient conditions for finite index. This is the first result that gives necessary and sufficient conditions for finite index, and can be seen as a dynamical analog of the Serre Open Image Theorem. When K is a number field, our proof is conditional on both the abc conjecture for K and Vojta's conjecture for blowups of P-1 x P-1. We also use our approach to solve some natural variants of the finite index problem for modified trees.
引用
收藏
页码:37 / 72
页数:36
相关论文
共 61 条
[1]  
[Anonymous], 2000, GRADUATE TEXTS MATH
[2]  
Bell J.P., 2016, MATH SURVEYS MONOGRA
[3]   A case of the dynamical Mordell-Lang conjecture [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Kurlberg, Par ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2012, 352 (01) :1-26
[4]   Arboreal Galois representations [J].
Boston, Nigel ;
Jones, Rafe .
GEOMETRIAE DEDICATA, 2007, 124 (01) :27-35
[5]  
Boston N, 2009, PURE APPL MATH Q, V5, P213
[6]   ABC implies a Zsigmondy principle for ramification [J].
Bridy, Andrew ;
Tucker, Thomas J. .
JOURNAL OF NUMBER THEORY, 2018, 182 :296-310
[7]   An upper bound for the GCD of an-1 and bn-1 [J].
Bugeaud, Y ;
Corvaja, P ;
Zannier, U .
MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (01) :79-84
[8]   A lower bound for the height of a rational function at S-unit points [J].
Corvaja, P ;
Zannier, U .
MONATSHEFTE FUR MATHEMATIK, 2005, 144 (03) :203-224
[9]   ON THE GALOIS-GROUPS OF THE ITERATES OF X2+1 [J].
CREMONA, JE .
MATHEMATIKA, 1989, 36 (72) :259-261
[10]   Classification of Special Curves in the Space of Cubic Polynomials [J].
Favre, Charles . ;
Gauthier, Thomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (02) :362-411