Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces

被引:95
作者
Fefferman, Charles L. [1 ]
McCormick, David S. [2 ]
Robinson, James C. [3 ]
Rodrigo, Jose L. [3 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall,Washington Rd, Princeton, NJ 08544 USA
[2] Univ Sussex, Sch Math & Phys Sci, Pevensey 2, Brighton BN1 9QH, E Sussex, England
[3] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
GLOBAL EXISTENCE; SYSTEM;
D O I
10.1007/s00205-016-1042-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the local-in-time existence and uniqueness of solutions to the viscous, non-resistive magnetohydrodynamics (MHD) equations in R-d, where d = 2, 3, with initial data B-0 is an element of H-s(R-d) and u(0) is an element of Hs-1+epsilon(R-d) for s > d/2 and any 0 < epsilon < 1. The proof relies on maximal regularity estimates for the Stokes equation. The obstruction to taking epsilon = 0 is explained by the failure of solutions of the heat equation with initial data u(0) is an element of H(s-1)t o satisfy u is an element of L-1 (0, T; Hs+1); we provide an explicit example of this phenomenon.
引用
收藏
页码:677 / 691
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[2]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[3]   Rigorous numerical verification of uniqueness and smoothness in a surface growth model [J].
Bloemker, Dirk ;
Nolde, Christian ;
Robinson, James C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) :311-325
[4]   Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces [J].
Bourgain, Jean ;
Li, Dong .
INVENTIONES MATHEMATICAE, 2015, 201 (01) :97-157
[5]   Local existence for the non-resistive MHD equations in Besov spaces [J].
Chemin, Jean-Yves ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ADVANCES IN MATHEMATICS, 2016, 286 :1-31
[6]   GLOBAL EXISTENCE FOR THE INCOMPRESSIBLE NAVIER-STOKES SYSTEM [J].
CHEMIN, JY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) :20-28
[7]   Higher order commutator estimates and local existence for the non-resistive MHD equations and related models [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) :1035-1056
[8]   Mathematical results related to a two-dimensional magneto-hydrodynamic equations [J].
Jiu, Quansen ;
Niu, Dongjuan .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) :744-756
[9]   The heat equation in Lq((O, T), Lp)-spaces with weights [J].
Krylov, NV .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (05) :1117-1141
[10]   Global small solutions of 2-D incompressible MHD system [J].
Lin, Fanghua ;
Xu, Li ;
Zhang, Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) :5440-5485