Bottleneck of Diffusion and Inductive Effects in Li10Ge1-xSnxP2S12

被引:133
作者
Krauskopf, Thorben [1 ]
Culver, Sean P. [1 ,2 ]
Zeier, Wolfgang G. [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res LaMa, Heinrich Buff Ring 16, D-35392 Giessen, Germany
关键词
LITHIUM SUPERIONIC CONDUCTOR; SOLID-STATE LITHIUM; IONIC-CONDUCTIVITY; LI2S-P2S5; GLASSES; RECENT PROGRESS; LI6PS5X X; BATTERIES; ELECTROLYTES; CRYSTAL; LI10GEP2S12;
D O I
10.1021/acs.chemmater.8b00266
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium-ion conductor Li10GeP2S12 (LGPS) is known to exhibit ionic conductivity values as high as 12 mS.cm(-1). Unfortunately, counter to chemical intuition, many attempts to enhance the ionic transport in LGPS, e.g., by increasing the Sn fraction in Li10Ge1-xSnxP2S12, have even led to a reduction in the conductivity. Employing a combination of Rietveld refinements against X-ray diffraction data, speed of sound measurements, and electrochemical impedance spectroscopy, we investigate the structure-property relationships governing this behavior. Herein, it is shown that with increasing Sn4+ fraction in Li10Ge1-xSnxP2S12 a structural bottleneck along the diffusion channels in the z-direction begins to tighten, and with the concomitant increase in the lattice softness, the local ionic bonding interactions between Li+ and S2- become stronger, further increasing the activation barrier. This work provides a likely explanation for the lower conductivity exhibited by Li10SnP2S12 and demonstrates that there is more to the underlying lithium diffusion mechanism in the Li10MP2S12 structure.
引用
收藏
页码:1791 / 1798
页数:8
相关论文
共 48 条
[1]   A SCALE OF ELECTRONEGATIVITY BASED ON ELECTROSTATIC FORCE [J].
ALLRED, AL ;
ROCHOW, EG .
JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1958, 5 (04) :264-268
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure [J].
Brant, Jacilynn A. ;
Massi, Danielle M. ;
Holzwarth, N. A. W. ;
MacNeil, Joseph H. ;
Douvalis, Alexios P. ;
Bakas, Thomas ;
Martin, Steve W. ;
Gross, Michael D. ;
Aitken, Jennifer A. .
CHEMISTRY OF MATERIALS, 2015, 27 (01) :189-196
[5]   Li10Si0.3Sn0.7P2S12 - A low-cost and low-grain-boundary-resistance lithium superionic conductor [J].
Bron, Philipp ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF POWER SOURCES, 2016, 329 :530-535
[6]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[7]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[8]  
Coelho A.A., 2007, TOPAS-academic
[9]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[10]   Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements [J].
Deiseroth, Hans-Joerg ;
Maier, Joachim ;
Weichert, Katja ;
Nickel, Vera ;
Kong, Shiao-Tong ;
Reiner, Christof .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2011, 637 (10) :1287-1294