Structural and dynamical change of liquid carbon with pressure: ab initio molecular dynamics simulations

被引:2
作者
Zhao, G. [1 ]
Mu, H. F. [1 ]
Wang, D. H. [1 ]
Yang, C. L. [1 ]
Kwang, J. [1 ]
Song, J. Y. [1 ]
Shao, Z. C. [1 ]
机构
[1] Ludong Univ, Sch Phys & Optoelect Engn, Yantai 264025, Peoples R China
基金
中国国家自然科学基金;
关键词
TEMPERATURE; DIFFUSION; GRAPHITE; WATER;
D O I
10.1088/0031-8949/88/04/045601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The structural, electronic and dynamical properties of normal and supercooled liquid carbon were studied by ab initio molecular dynamics simulations with a pressure range of 51.4-1060 GPa. A first-order liquid-liquid phase transition is not found even in supercooled liquid carbon along the 7500 K isotherm, but the structural change in the low-pressure range is more rapid than that at higher pressures because the threefold coordinated (sp(2)) local structure is more easily compressed than the fourfold-(sp(3)), fivefold-and sixfold-coordinated local structures. The calculated electronic density of state shows a shallow dip at 1060 GPa, indicating a nearly metallic bonding at higher pressures. The anomalous increase of diffusivity with increasing pressure is observed, which is similar to that observed in water and silicon dioxide and is due to the gradual breaking of an open network structure. Our results indicate that it is easiest to form diamond crystal nuclei in liquid carbon at about 500 GPa, which corresponds to the position of the maximum in the melting curve.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Ab initio molecular dynamics simulations of low energy recoil events in MgO
    Petersen, B. A.
    Liu, B.
    Weber, W. J.
    Zhang, Y.
    JOURNAL OF NUCLEAR MATERIALS, 2017, 486 : 122 - 128
  • [32] An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations
    Tsuchida, Eiji
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (08)
  • [33] The melting temperature of bulk silicon from ab initio molecular dynamics simulations
    Yoo, Soohaeng
    Xantheas, Sotiris S.
    Zeng, Xiao Cheng
    CHEMICAL PHYSICS LETTERS, 2009, 481 (1-3) : 88 - 90
  • [34] On the Use of Accelerated Molecular Dynamics to Enhance Configurational Sampling in Ab Initio Simulations
    Bucher, Denis
    Pierce, Levi C. T.
    McCammon, J. Andrew
    Markwick, Phineus R. L.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (04) : 890 - 897
  • [35] Water Structures at Metal Electrodes Studied by Ab Initio Molecular Dynamics Simulations
    Gross, Axel
    Gossenberger, Florian
    Lin, Xiaohang
    Naderian, Maryam
    Sakong, Sung
    Roman, Tanglaw
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (08) : E3015 - E3020
  • [36] Connection between water's dynamical and structural properties: Insights from ab initio simulations
    Herrero, Cecilia
    Pauletti, Michela
    Tocci, Gabrile
    Iannuzzi, Marcella
    Joly, Laurent
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (21)
  • [37] Ab initio molecular dynamics simulations of excited hydrogen halides and methyl halides
    Kumar, Anupriya
    Lee, Eun Cheol
    Lee, Sik
    Kolaski, Maciej
    CHEMICAL PHYSICS LETTERS, 2009, 482 (4-6) : 189 - 194
  • [38] Solvation and Dynamics of Sodium and Potassium in Ethylene Carbonate from ab Initio Molecular Dynamics Simulations
    Tuan Anh Pham
    Kweon, Kyoung E.
    Samanta, Amit
    Lordi, Vincenzo
    Pask, John E.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (40) : 21913 - 21920
  • [39] Carbon diffusion in molten uranium: an ab initio molecular dynamics study
    Garrett, Kerry E.
    Abrecht, David G.
    Kessler, Sean H.
    Henson, Neil J.
    Devanathan, Ram
    Schwantes, Jon M.
    Reilly, Dallas D.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2018, 26 (03)
  • [40] Ab Initio-Derived Force Field for Amorphous Silica Interfaces for Use in Molecular Dynamics Simulations
    Senanayake, Hasini S. S.
    Wimalasiri, Pubudu N. N.
    Godahewa, Sahan M. M.
    Thompson, Ward H. H.
    Greathouse, Jeffery A. A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (33) : 16567 - 16578