Adaptive interactive device control by using reinforcement learning in ambient information environment

被引:0
作者
Nakase, Junya [1 ]
Moriyama, Koichi [2 ]
Kiyokawa, Kiyoshi [1 ]
Numao, Masayuki [2 ]
Oyama, Mayumi [3 ]
Kurihara, Satoshi [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka 565, Japan
[2] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan
[3] Kwansei Gakuin Univ, Osaka, Japan
来源
IEEE VIRTUAL REALITY CONFERENCE 2012 PROCEEDINGS | 2012年
关键词
interaction sequence; reinforcement learning; profit-sharing; ambient information system;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In ambient information systems, not only extracting human behavior by sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper we propose a reinforcement learning framework to extract suitable interaction for each person from daily behavior. In the experiment, we show the feasibility of the proposed methodology.
引用
收藏
页数:4
相关论文
共 6 条
  • [1] Chau M., 2005, REAL TIME EYE TRACKI
  • [2] Grefenstette J. J., 1988, Machine Learning, V3, P225, DOI 10.1023/A:1022614421909
  • [3] Kashiwagi S, 1985, Shinrigaku Kenkyu, V56, P179
  • [4] Miyagi Takahiro, 2008, INT C SYST MAN CYB
  • [5] Watanabe Yuta, 2010, IEEE SENS 2010 DEC
  • [6] Watkins C. J. H., 1992, Machine Learning, V8, P55