COMPACT LEAVES OF CODIMENSION ONE HOLOMORPHIC FOLIATIONS ON PROJECTIVE MANIFOLDS

被引:10
作者
Claudon, Benoit [1 ]
Loray, Frank [2 ]
Pereira, Jorge Vitorio [3 ]
Touzet, Frederic [2 ]
机构
[1] Univ Lorraine, IECL, BP 70239, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Rennes 1, CNRS, UMR 6625, Inst Rech Math Rennes IRMAR, F-35000 Rennes, France
[3] IMPA, Estr Dona Castorina,110 Horto, Rio De Janeiro, Brazil
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2018年 / 51卷 / 06期
关键词
D O I
10.24033/asens.2379
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies codimension one foliations on projective manifolds having a compact leaf (free of singularities). It explores the interplay between Ueda theory (order of flatness of the normal bundle) and the holonomy representation (dynamics of the foliation in the transverse direction). We address in particular the following problems: existence of foliation having as a leaf a given hypersurface with topologically torsion normal bundle, global structure of foliations having a compact leaf whose holonomy is abelian (resp. solvable), and factorization results.
引用
收藏
页码:1457 / 1506
页数:50
相关论文
共 43 条
[1]  
[Anonymous], 1970, LECT NOTES MATH
[2]  
[Anonymous], 1961, Inst. Hautes Etudes Sci. Publ. Math., P167
[3]  
[Anonymous], 2004, Ergebn. Math. Grenzg.
[4]  
[Anonymous], 1987, Publications of the Mathematical Society of Japan
[5]  
[Anonymous], 2016, J EC POLYTECH MATH
[6]  
[Anonymous], 1963, Bull. Soc. Math. France
[7]  
[Anonymous], 1982, Asterisque
[8]  
ARNOLD VI, 1983, GRUNDL MATH WISS, V250
[9]  
Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
[10]  
BRUNELLA M, 2000, MONOGRAFIAS MATEMATI