The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field

被引:15
作者
Zhong Ming [1 ,2 ]
Xu Hui [1 ,2 ]
Liu Xiao-Xian [1 ,2 ]
Tong Pei-Qing [1 ,2 ,3 ]
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Inst Theoret Phys, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab Numer Simulat Large Scale Complex, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Dzyaloshinskii-Moriya interaction; the XY chain in a transverse field; quantum entanglement; ground-state properties; SPIN-CORRELATION FUNCTIONS; ANTIFERROMAGNETIC CHAIN; STATISTICAL MECHANICS; WEAK FERROMAGNETISM; ENTANGLEMENT; MODEL;
D O I
10.1088/1674-1056/22/9/090313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effects of the Dzyaloshinski-Moriya (DM) interaction on the ground-state properties of the anisotropic XY chain in a transverse field have been studied by means of correlation functions and entanglement. Different from the case without the DM interaction, the excitation spectra epsilon(k) of this model are not symmetrical in the momentum space and are not always positive. As a result, besides the ferromagnetic (FM) and the paramagnetic (PM) phases, a gapless chiral phase is induced. In the chiral phase, the von Neumann entropy is proportional to log(2)L (L is the length of a subchain) with the coefficient A approximate to 1/3, which is the same as that of the XY chain in a transverse field without the DM interaction for gamma = 0 and 0 < h <= 1. And in the vicinity of the critical point between the chiral phase and the FM (or PM) phase, the behaviors of the nearest-neighbor concurrence and its derivative are like those for the anisotropy transition.
引用
收藏
页数:7
相关论文
共 42 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[3]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[4]   Entanglement evolution in an anisotropic two-qubit Heisenberg XYZ model with Dzyaloshinskii-Moriya interaction [J].
Chen Tao ;
Huang Yan-Xia ;
Shan Chuan-Jia ;
Li Jin-Xing ;
Liu Ji-Bing ;
Liu Tang-Kun .
CHINESE PHYSICS B, 2010, 19 (05) :0503021-0503026
[5]   Symmetry-breaking effects upon bipartite and multipartite entanglement in the XY model [J].
de Oliveira, Thiago R. ;
Rigolin, Gustavo ;
de Oliveira, Marcos C. ;
Miranda, E. .
PHYSICAL REVIEW A, 2008, 77 (03)
[6]   Dynamic probes of quantum spin chains with the Dzyaloshinskii-Moriya interaction [J].
Derzhko, Oleg ;
Verkholyak, Taras ;
Krokhmalskii, Taras ;
Buettner, Helmut .
PHYSICAL REVIEW B, 2006, 73 (21)
[7]   A THERMODYNAMIC THEORY OF WEAK FERROMAGNETISM OF ANTIFERROMAGNETICS [J].
DZYALOSHINSKY, I .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1958, 4 (04) :241-255
[8]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467
[9]   Quantum criticality of the kagome antiferromagnet with Dzyaloshinskii-Moriya interactions [J].
Huh, Yejin ;
Fritz, Lars ;
Sachdev, Subir .
PHYSICAL REVIEW B, 2010, 81 (14)
[10]   Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction [J].
Jafari, R. ;
Kargarian, M. ;
Langari, A. ;
Siahatgar, M. .
PHYSICAL REVIEW B, 2008, 78 (21)