Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA

被引:25
作者
Bazow, Dennis [1 ]
Heinz, Ulrich [1 ]
Strickland, Michael [2 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Kent State Univ, Dept Phys, Kent, OH 44242 USA
基金
美国国家科学基金会;
关键词
Relativistic fluid dynamics; Quark-gluon plasma; GPU; CUDA; Parallel computing;
D O I
10.1016/j.cpc.2017.01.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow. Program summary Program Title: GPU-VH Program Files doi: http://dx.doi.org/10.17632/dhnmtfpz9k.1 Licensing Provisions: GPLv3 Programming language: CUDA C External routines/libraries: Google Test, GNU Scientific Library (GSL) Nature of problem: Dynamical evolution of the fluid dynamic stage of the quark-gluon plasma produced in nuclear collisions Solution method: Kurganov-Tadmor algorithm (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:92 / 113
页数:22
相关论文
共 50 条
[1]   Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lemaitre-Robertson-Walker spacetime [J].
Bazow, D. ;
Denicol, G. S. ;
Heinz, U. ;
Martinez, M. ;
Noronha, J. .
PHYSICAL REVIEW D, 2016, 94 (12)
[2]   Transient oscillations in a macroscopic effective theory of the Boltzmann equation [J].
Bazow, Dennis ;
Martinez, Mauricio ;
Heinz, Ulrich .
PHYSICAL REVIEW D, 2016, 93 (03)
[3]   Second-order (2+1)-dimensional anisotropic hydrodynamics [J].
Bazow, Dennis ;
Heinz, Ulrich ;
Strickland, Michael .
PHYSICAL REVIEW C, 2014, 90 (05)
[4]   Applying Bayesian parameter estimation to relativistic heavy-ion collisions: Simultaneous characterization of the initial state and quark-gluon plasma medium [J].
Bernhard, Jonah E. ;
Moreland, J. Scott ;
Bass, Steffen A. ;
Liu, Jia ;
Heinz, Ulrich .
PHYSICAL REVIEW C, 2016, 94 (02)
[5]   High-order central schemes for hyperbolic systems of conservation laws [J].
Bianco, F ;
Puppo, G ;
Russo, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01) :294-322
[6]   The QCD equation of state with dynamical quarks [J].
Borsanyi, Szabolcs ;
Endrodi, Gergely ;
Fodor, Zoltan ;
Jakovac, Antal ;
Katz, Sandor D. ;
Krieg, Stefan ;
Ratti, Claudia ;
Szabo, Kalman K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (11)
[7]   Collective dynamics in high-energy proton-nucleus collisions [J].
Bozek, Piotr ;
Broniowski, Wojciech .
PHYSICAL REVIEW C, 2013, 88 (01)
[8]   Rapid hydrodynamic expansion in relativistic heavy-ion collisions [J].
Bozek, Piotr ;
Wyskiel, Iwona .
PHYSICAL REVIEW C, 2009, 79 (04)
[9]   Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes [J].
Chesler, Paul M. ;
Yaffe, Laurence G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[10]   Horizon Formation and Far-from-Equilibrium Isotropization in a Supersymmetric Yang-Mills Plasma [J].
Chesler, Paul M. ;
Yaffe, Laurence G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (21)