Density functional theory in materials science

被引:126
|
作者
Neugebauer, Joerg [1 ]
Hickel, Tilmann [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Computat Mat Design, D-40237 Dusseldorf, Germany
关键词
GENERALIZED GRADIENT APPROXIMATION; ELECTRON; EXCHANGE; DEFECTS;
D O I
10.1002/wcms.1125
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form. (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:438 / 448
页数:11
相关论文
共 50 条
  • [1] Deep dive into machine learning density functional theory for materials science and chemistry
    Fiedler, L.
    Shah, K.
    Bussmann, M.
    Cangi, A.
    PHYSICAL REVIEW MATERIALS, 2022, 6 (04)
  • [2] Density Functional Theory as a Data Science
    Tsuneda, Takao
    CHEMICAL RECORD, 2020, 20 (07) : 618 - 639
  • [3] Density Functional Theory in Forensic Science: Applications and Challenges
    Mariotto, Livia Salviano
    Rodrigues, Caio Henrique Pinke
    Mason, Nigel John
    Bruni, Aline Thais
    Fantuzzi, Felipe
    WILEY INTERDISCIPLINARY REVIEWS: FORENSIC SCIENCE, 2025, 7 (01):
  • [4] Noncollinear density functional theory
    Pu, Zhichen
    Li, Hao
    Zhang, Ning
    Jiang, Hong
    Gao, Yiqin
    Xiao, Yunlong
    Sun, Qiming
    Zhang, Yong
    Shao, Sihong
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [5] Carbon dioxide capture by nitrogen containing organic materials - A density functional theory investigation
    Dash, Bibek
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2018, 1128 : 1 - 14
  • [6] A quantum hindsight on density functional theory for computation of materials properties
    Sham, Lu J.
    MRS BULLETIN, 2020, 45 (08) : 669 - 674
  • [7] An Accurate Density Coherence Functional for Hybrid Multiconfiguration Density Coherence Functional Theory
    Zhang, Dayou
    Truhlar, Donald G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (19) : 6551 - 6556
  • [8] Introducing a new correlation functional in density functional theory
    Rahmatpour, Esmaeil
    Esmaeili, Asghar
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Statistically representative databases for density functional theory via data science
    Morgante, Pierpaolo
    Peverati, Roberto
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (35) : 19092 - 19103
  • [10] Unity of Kohn-Sham density-functional theory and reduced-density-matrix-functional theory
    Su, Neil Qiang
    PHYSICAL REVIEW A, 2021, 104 (05)