Morphological Tuning of Polymeric Nanoparticles via Microfluidic Platform for Fuel Cell Applications

被引:52
作者
Hasani-Sadrabadi, Mohammad Mahdi [1 ,2 ,3 ]
Majedi, Fatemeh Sadat [1 ,2 ]
VanDersarl, Jules John [1 ]
Dashtimoghadam, Erfan [3 ]
Ghaffarian, S. Reza [3 ]
Bertsch, Arnaud [1 ]
Moaddel, Homayoun [4 ]
Renaud, Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Microengn, Lab Microsyst LMIS4, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland
[3] Amirkabir Univ Technol, Dept Polymer Engn & Color Technol, Tehran, Iran
[4] Hydrogen & Fuel Cell Inc, Arcadia, CA 91006 USA
关键词
COMPOSITE MEMBRANES; POLYBENZIMIDAZOLE; TEMPERATURE; CHANNELS;
D O I
10.1021/ja307751a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
At nanoscale length scales, the properties of particles change rapidly with the slightest change in dimension. The use of a microfluidic platform enables precise control of sub-100 nm organic nanoparticles (NPs) based on polybenzimidazole. Using hydrodynamic flow focusing, we can control the size and shape of the NPs, which in turn controls a number of particle material properties. The anhydrous proton-conducting nature of the prepared NPs allowed us to make a high-performance ion exchange membrane for fuel cell applications, and microfluidic tuning of the NPs allowed us subsequently to tune the fuel cell performance.
引用
收藏
页码:18904 / 18907
页数:4
相关论文
共 23 条
[1]   Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells [J].
Adjemian, KT ;
Dominey, R ;
Krishnan, L ;
Ota, H ;
Majsztrik, P ;
Zhang, T ;
Mann, J ;
Kirby, B ;
Gatto, L ;
Velo-Simpson, M ;
Leahy, J ;
Srinivasant, S ;
Benziger, JB ;
Bocarsly, AB .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2238-2248
[2]   Nafion®-polybenzimidazole (PBI) composite membranes for DMFC applications [J].
Ainla, Alar ;
Brandell, Daniel .
SOLID STATE IONICS, 2007, 178 (7-10) :581-585
[3]   Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest [J].
Antonio Asensio, Juan ;
Sanchez, Eduardo M. ;
Gomez-Romero, Pedro .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3210-3239
[4]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[5]   Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes [J].
Choi, Bong Gill ;
Hong, Jinkee ;
Park, Young Chul ;
Jung, Doo Hwan ;
Hong, Won Hi ;
Hammond, Paula T. ;
Park, HoSeok .
ACS NANO, 2011, 5 (06) :5167-5174
[6]   Controlling drug nanoparticle formation by rapid precipitation [J].
D'Addio, Suzanne M. ;
Prud'homme, Robert K. .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (06) :417-426
[7]   Preparation and characterization of nanocomposite polyelectrolyte membranes based on Nafion® ionomer and nanocrystalline hydroxyapatite [J].
Hasani-Sadrabadi, Mohammad Mahdi ;
Mokarram, Nassir ;
Azami, Mahmoud ;
Dashtimoghadam, Erfan ;
Majedi, Fatemeh Sadat ;
Jacob, Karl I. .
POLYMER, 2011, 52 (05) :1286-1296
[8]   Functional materials based on self-assembly of polymeric supramolecules [J].
Ikkala, O ;
ten Brinke, G .
SCIENCE, 2002, 295 (5564) :2407-2409
[9]   Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing [J].
Jahn, A ;
Vreeland, WN ;
Gaitan, M ;
Locascio, LE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (09) :2674-2675
[10]   Microfluidic platform for controlled synthesis of polymeric nanoparticles [J].
Karnik, Rohit ;
Gu, Frank ;
Basto, Pamela ;
Cannizzaro, Christopher ;
Dean, Lindsey ;
Kyei-Manu, William ;
Langer, Robert ;
Farokhzad, Omid C. .
NANO LETTERS, 2008, 8 (09) :2906-2912