A Kleinecke-Shirokov type condition with Jordan automorphisms

被引:9
作者
Bresar, M
Fosner, A
Fosner, M
机构
[1] Univ Maribor, Dept Math, Maribor 2000, Slovenia
[2] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
D O I
10.4064/sm147-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be a Jordan automorphism of an algebra A. The situation when an element a is an element of A satisfies (1/2)(phi(a) + phi(-1)(a)) = a is considered. The result which we obtain implies the Kleinecke-Shirokov theorem and Jacobson's lemma.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 1956, USPEHI MAT NAUK
[3]  
AUPETIT B, 1991, PRIMER SPECTRAL THEO
[4]  
Halmos P.R., 1954, Am. J. Math., V76, P191
[5]   Rational methods in the theory of Lie algebras [J].
Jacobson, N .
ANNALS OF MATHEMATICS, 1935, 36 :875-881
[6]   UNIQUENESS OF (COMPLETE) NORM TOPOLOGY [J].
JOHNSON, BE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (04) :537-&
[7]   CONTINUITY OF DERIVATIONS AND A PROBLEM OF KAPLANSKY [J].
JOHNSON, BE ;
SINCLAIR, AM .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (04) :1067-&
[8]   JACOBSON LEMMA REVISITED [J].
KAPLANSKY, I .
JOURNAL OF ALGEBRA, 1980, 62 (02) :473-476
[9]  
Katavolos A, 1998, STUD MATH, V128, P159
[10]  
Kleinecke DC., 1957, P AM MATH SOC, V8, P535, DOI DOI 10.1090/S0002-9939-1957-0087914-4