Comparing Eight Parameter Estimation Methods for the Ratcliff Diffusion Model Using Free Software

被引:11
作者
Alexandrowicz, Rainer W. [1 ]
Gula, Bartosz [1 ]
机构
[1] Univ Klagenfurt, Inst Psychol, Klagenfurt, Austria
关键词
diffusion model; parameter estimation; parameter recovery; method comparison; simulation study; RESPONSE-TIME; EZ; TUTORIAL; MEMORY;
D O I
10.3389/fpsyg.2020.484737
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The Ratcliff Diffusion Model has become an important and widely used tool for the evaluation of psychological experiments. Concurrently, numerous programs and routines have appeared to estimate the model's parameters. The present study aims at comparing some of the most widely used tools with special focus on freely available routines (i.e., open source). Our simulations show that (1) starting point and non-decision time were recovered better than drift rate, (2) the Bayesian approach outperformed all other approaches when the number of trials was low, (3) the Kolmogorov-Smirnov and chi(2)approaches revealed more bias than Bayesian or Maximum Likelihood based routines, and (4) EZ produced substantially biased estimates of threshold separation, non-decision time and drift rate when starting point z not equal a/2. We discuss the implications for the choice of parameter estimation approaches for real data and suggest that if biased starting point cannot be excluded, EZ will produce deviant estimates and should be used with great care.
引用
收藏
页数:22
相关论文
共 70 条
[1]   The diffusion model visualizer: an interactive tool to understand the diffusion model parameters [J].
Alexandrowicz, Rainer W. .
PSYCHOLOGICAL RESEARCH-PSYCHOLOGISCHE FORSCHUNG, 2020, 84 (04) :1157-1165
[2]  
[Anonymous], 2017, JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling (Version 4.3. 0)
[3]  
[Anonymous], 2013, All Likelihood: Statistical Modelling and Inference Using Likelihood
[4]  
[Anonymous], 2006, R News
[5]  
[Anonymous], 2000, Statistical Distributions
[6]  
[Anonymous], 2012, BUGS BOOK PRACTICAL
[7]   Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods [J].
Arnold, Nina R. ;
Broeder, Arndt ;
Bayen, Ute J. .
PSYCHOLOGICAL RESEARCH-PSYCHOLOGISCHE FORSCHUNG, 2015, 79 (05) :882-898
[8]   A Diffusion Model Analysis of Episodic Recognition in Preclinical Individuals With a Family History for Alzheimer's Disease: The Adult Children Study [J].
Aschenbrenner, Andrew J. ;
Balota, David A. ;
Gordon, Brian A. ;
Ratcliff, Roger ;
Morris, John C. .
NEUROPSYCHOLOGY, 2016, 30 (02) :225-238
[9]  
BERGER JO, 1987, J AM STAT ASSOC, V82, P112, DOI 10.2307/2289131
[10]   Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations [J].
Boehm, Udo ;
Annis, Jeffrey ;
Frank, Michael J. ;
Hawkins, Guy E. ;
Heathcote, Andrew ;
Kellen, David ;
Krypotos, Angelos-Miltiadis ;
Lerche, Veronika ;
Logan, Gordon D. ;
Palmeri, Thomas J. ;
van Ravenzwaaij, Don ;
Servant, Mathieu ;
Singmann, Henrik ;
Starns, Jeffrey J. ;
Voss, Andreas ;
Wiecki, Thomas V. ;
Matzke, Dora ;
Wagenmakers, Eric-Jan .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2018, 87 :46-75