On a class of third-order nonlocal Hamiltonian operators

被引:6
|
作者
Casati, M. [1 ]
Ferapontov, E. V. [1 ]
Pavlov, M. V. [2 ]
Vitolo, R. F. [3 ,4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow, Russia
[3] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
[4] Ist Nazl Fis Nucl, Sect Lecce, Lecce, Italy
关键词
Nonlocal Hamiltonian operator; Monge metric; Dirac reduction; Poisson vertex algebra; POISSON STRUCTURES; EQUATIONS; ASSOCIATIVITY; BRACKETS;
D O I
10.1016/j.geomphys.2018.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge metric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条
  • [42] Minimal positive realizations of a class of third-order systems
    Wang, ZZ
    Wang, L
    Yu, WS
    Liu, GP
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 4151 - 4152
  • [43] Analytic Properties of Solutions of a Class of Third-Order Equations
    Andreeva, T. K.
    Martynov, I. P.
    Pron'ko, V. A.
    DIFFERENTIAL EQUATIONS, 2011, 47 (09) : 1231 - 1236
  • [44] On the Solvability of One Class of Third-Order Differential Equations
    B. T. Bilalov
    M. I. Ismailov
    Z. A. Kasumov
    Ukrainian Mathematical Journal, 2021, 73 : 367 - 383
  • [45] On first integrals of a class of third-order differential equations
    Berezkina, N. S.
    Martynov, I. P.
    Pron'ko, V. A.
    DIFFERENTIAL EQUATIONS, 2009, 45 (10) : 1536 - 1538
  • [46] Modules of third-order differential operators on a conformally flat manifold
    Djounga, SEL
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (03) : 251 - 261
  • [47] Solvability of Certain Group of the Third-Order Linear Differential Operators
    Chvalina, Jan
    Chvalinova, Ludmila
    Moucka, Jiri
    XXX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PROCEEDINGS SCIENCE, 2012, : 69 - 78
  • [48] Third-order differential ladder operators and supersymmetric quantum mechanics
    Mateo, J.
    Negro, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (04)
  • [49] Third-order iterative methods for operators with bounded second derivative
    Gutierrez, JM
    Hernandez, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 82 (1-2) : 171 - 183
  • [50] Third-order iterative methods for operators with bounded second derivative
    Univ of La Rioja C/Luis de Ulloa s/n, Logrono, Spain
    J Comput Appl Math, 1-2 (171-183):