On a class of third-order nonlocal Hamiltonian operators

被引:6
|
作者
Casati, M. [1 ]
Ferapontov, E. V. [1 ]
Pavlov, M. V. [2 ]
Vitolo, R. F. [3 ,4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow, Russia
[3] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
[4] Ist Nazl Fis Nucl, Sect Lecce, Lecce, Italy
关键词
Nonlocal Hamiltonian operator; Monge metric; Dirac reduction; Poisson vertex algebra; POISSON STRUCTURES; EQUATIONS; ASSOCIATIVITY; BRACKETS;
D O I
10.1016/j.geomphys.2018.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge metric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条
  • [31] One Class of Third-Order Linear ODE's
    Slavyanov, S. Yu.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2010, 6244 : 232 - 237
  • [32] Analytic properties of solutions of a class of third-order equations
    T. K. Andreeva
    I. P. Martynov
    V. A. Pron’ko
    Differential Equations, 2011, 47 : 1231 - 1236
  • [33] PROPERTIES OF SOLUTIONS OF A CLASS OF THIRD-ORDER DIFFERENTIAL EQUATIONS
    JONES, GD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) : 165 - 169
  • [34] VERIFICATION OF AIZERMANS CONJECTURE FOR A CLASS OF THIRD-ORDER SYSTEMS
    BERGEN, AR
    WILLIAMS, IJ
    IRE TRANSACTIONS ON AUTOMATIC CONTROL, 1962, AC 7 (03): : 42 - &
  • [35] LIMIT CYCLES FOR A CLASS OF THIRD-ORDER DIFFERENTIAL EQUATIONS
    Llibre, Jaume
    Yu, Jiang
    Zhang, Xiang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (02) : 581 - 594
  • [36] EULER CASE FOR A CLASS OF THIRD-ORDER DIFFERENTIAL EQUATION
    Al-Hammadi, A. S. A.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2010, 51 : 5 - 15
  • [37] On the Solvability of One Class of Third-Order Differential Equations
    Bilalov, B. T.
    Ismailov, M. I.
    Kasumov, Z. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (03) : 367 - 383
  • [38] On first integrals of a class of third-order differential equations
    N. S. Berezkina
    I. P. Martynov
    V. A. Pron’ko
    Differential Equations, 2009, 45 : 1536 - 1538
  • [39] A class of Newton's methods with third-order convergence
    Zhou Xiaojian
    APPLIED MATHEMATICS LETTERS, 2007, 20 (09) : 1026 - 1030
  • [40] SELF-ADJOINT REALIZATION OF A CLASS OF THIRD-ORDER DIFFERENTIAL OPERATORS WITH AN EIGENPARAMETER CONTAINED IN THE BOUNDARY CONDITIONS
    Li, Kun
    Bai, Yulin
    Wang, Wanyi
    Meng, Fanwei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (06): : 2631 - 2643