On a class of third-order nonlocal Hamiltonian operators

被引:6
|
作者
Casati, M. [1 ]
Ferapontov, E. V. [1 ]
Pavlov, M. V. [2 ]
Vitolo, R. F. [3 ,4 ]
机构
[1] Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow, Russia
[3] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
[4] Ist Nazl Fis Nucl, Sect Lecce, Lecce, Italy
关键词
Nonlocal Hamiltonian operator; Monge metric; Dirac reduction; Poisson vertex algebra; POISSON STRUCTURES; EQUATIONS; ASSOCIATIVITY; BRACKETS;
D O I
10.1016/j.geomphys.2018.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the theory of Poisson vertex algebras we calculate skew-symmetry conditions and Jacobi identities for a class of third-order nonlocal operators of differential-geometric type. Hamiltonian operators within this class are defined by a Monge metric and a skew-symmetric two-form satisfying a number of differential-geometric constraints. Complete classification results in the 2-component and 3-component cases are obtained. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 296
页数:12
相关论文
共 50 条
  • [1] Towards the Classification of Homogeneous Third-Order Hamiltonian Operators
    Ferapontov, E. V.
    Pavlov, M. V.
    Vitolo, R. F.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (22) : 6829 - 6855
  • [2] Projective-geometric aspects of homogeneous third-order Hamiltonian operators
    Ferapontov, E. V.
    Pavlov, M. V.
    Vitolo, R. F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 85 : 16 - 28
  • [3] Systems of conservation laws with third-order Hamiltonian structures
    Ferapontov, Evgeny V.
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (06) : 1525 - 1550
  • [4] Systems of conservation laws with third-order Hamiltonian structures
    Evgeny V. Ferapontov
    Maxim V. Pavlov
    Raffaele F. Vitolo
    Letters in Mathematical Physics, 2018, 108 : 1525 - 1550
  • [5] Regular approximation of singular third-order differential operators
    Zhang, Maozhu
    Li, Kun
    Wang, Yicao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (01)
  • [6] Hamiltonian Formulation for Continuous Third-order Systems Using Fractional Derivatives
    Alawaideh, Yazen M.
    Hijjawi, Ra'ed S.
    Khalifeh, Jamil M.
    JORDAN JOURNAL OF PHYSICS, 2021, 14 (01): : 35 - 47
  • [7] A Class of Nonlocal Hypoelliptic Operators and their Extensions
    Garofalo, Nicola
    Tralli, Giulio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (05) : 1717 - 1744
  • [8] Nonlocal operators of order near zero
    Correa, Ernesto
    de Pablo, Arturo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (01) : 837 - 867
  • [9] Spectral Curves for Third-Order ODOs
    Rueda, Sonia L.
    Zurro, Maria-Angeles
    AXIOMS, 2024, 13 (04)
  • [10] Regular third-order boundary value problems
    Ugurlu, Ekin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 343 : 247 - 257