On Derivation of the Poisson-Boltzmann Equation

被引:5
作者
Chenn, Ilias [1 ]
Sigal, I. M. [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Toronto, Dept Math, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Density functional theory; Kohn-Sham equation; Microscopic limit; Partial differential equations of quantum physics; Poisson-Boltzmann equation; Electrostatics; HARTREE-FOCK THEORY; FORMULATION; STABILITY; CRYSTALS; ATOMS;
D O I
10.1007/s10955-020-02562-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the microscopic reduced Hartree-Fock equation, we derive the macroscopic linearized Poisson-Boltzmann equation for the electrostatic potential associated with the electron density.
引用
收藏
页码:954 / 1001
页数:48
相关论文
共 36 条
[1]   Existence of minimizers for Kohn-Sham models in quantum chemistry [J].
Anantharaman, Arnaud ;
Cances, Eric .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2425-2455
[2]  
[Anonymous], PITMAN RES NOTES MAT
[3]  
[Anonymous], 2005, MATH SURVEYS MONOGRA
[4]  
[Anonymous], 2001, Analysis
[5]   GENERALIZED HARTREE-FOCK THEORY AND THE HUBBARD-MODEL [J].
BACH, V ;
LIEB, EH ;
SOLOVEJ, JP .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) :3-89
[6]  
Bach V, 2020, J EVOL EQU
[7]  
Brislawn C, 1988, P AMS, V104
[8]  
Cances E., 2011, Lecture Notes in Computational Science and Engineering, V82
[9]   A new approach to the modeling of local defects in crystals: The reduced Hartree-Fock case [J].
Cances, Eric ;
Deleurence, Amelie ;
Lewin, Mathieu .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (01) :129-177
[10]   A mathematical formulation of the random phase approximation for crystals [J].
Cances, Eric ;
Stoltz, Gabriel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (06) :887-925