Principal ideal multiplication modules

被引:7
作者
Azizi, A. [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 71454, Iran
关键词
multiplication modules; prime submodules; principal ideal multiplication modules; semi-non-torsion modules;
D O I
10.1142/S1005386708000606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an R-module. If for every sub module N of M; there exists an element r epsilon R such that N=rM; then we say that M is a principal ideal multiplication module. In this paper, the relations between principal ideal multiplication modules, multiplication modules, cyclicmodules, and modules over principal ideal rings are studied. It is proved that every principal ideal multiplication module over any quotient of a Dedekind domain iscyclic. Also, every principal ideal multiplication module with prime annihilator ideal is cyclic.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 17 条
[1]   Some remarks on multiplication ideals, II [J].
Anderson, DD .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) :2577-2583
[2]   Prime submodules and flat modules [J].
Azizi, A. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (01) :147-152
[3]   Intersection of prime submodules and dimension of modules [J].
Azizi, A .
ACTA MATHEMATICA SCIENTIA, 2005, 25 (03) :385-394
[4]   Weak multiplication modules [J].
Azizi, A .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (03) :529-534
[5]  
AZIZI A, J COMMUTATI IN PRESS
[6]  
Azizi A., 1999, HONAM MATH J, V21, P1
[7]   MULTIPLICATION MODULES [J].
BARNARD, A .
JOURNAL OF ALGEBRA, 1981, 71 (01) :174-178
[8]   MULTIPLICATION MODULES [J].
ELBAST, ZA ;
SMITH, PF .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (04) :755-779
[9]  
HUNGERFORD TW, 1989, ALGEBRA
[10]  
Kaplansky I., 1974, COMMUTATIVE RINGS