Surface properties and porosity of highly porous, nanostructured cellulose II particles

被引:38
作者
Beaumont, Marco [1 ]
Kondor, Anett [2 ]
Plappert, Sven [1 ]
Mitterer, Claudia [3 ]
Opietnik, Martina [4 ]
Potthast, Antje [1 ]
Rosenau, Thomas [1 ,5 ]
机构
[1] Univ Nat Resources & Life Sci Vienna BOKU, Dept Chem, Div Chem Renewable Resources, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[2] Surface Measurement Syst Ltd, Rosemont Rd, London HA0 4PE, England
[3] Univ Vienna, Polymer & Composite Engn PaCE Grp, Inst Mat Chem & Res, Fac Chem, Wahringerstr 42, A-1090 Vienna, Austria
[4] Lenzing AG, Werkstr 2, A-4860 Lenzing, Austria
[5] Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Porthansgatan 3, Turku, Finland
关键词
Nanocellulose; Lyocell; Inverse gas chromatography; Thermoporosimetry; Freeze-drying; Supercritical drying; INVERSE GAS-CHROMATOGRAPHY; DRYING METHOD; AEROGELS; NANOCRYSTALS; NANOFIBRILS; FIBERS; ENERGY;
D O I
10.1007/s10570-016-1091-y
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Recently, a new member of the nanocellulose family was introduced, a cellulose II gel consisting of nanostructured and spherical particles. In this study, we compared two different drying techniques to obtain highly porous powders from this gel with preserved meso- and macroporous nanostructure: first, freeze-drying after solvent exchange to tBuOH and second, supercritical drying of the respective EtOH alcogel. The approaches yielded aerogel powders with surface areas of 298 and 423 m(2)/g, respectively. Both powders are amphiphilic and possess energetically heterogeneous surfaces with dominating dispersive term of the surface energy in the range of 50-52 mJ/m(2), as determined by a combination of physicochemical surface characterization techniques, such as iGC, BET and SEM. Despite the lower surface area, the cheaper and more widespread method, freeze-drying, yields a more polar and reactive cryogel.
引用
收藏
页码:435 / 440
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2011, AEROGELS HDB, DOI DOI 10.1007/978-1-4419-7589-8
[2]   Oxygen and oil barrier properties of microfibrillated cellulose films and coatings [J].
Aulin, Christian ;
Gallstedt, Mikael ;
Lindstrom, Tom .
CELLULOSE, 2010, 17 (03) :559-574
[3]   Nanostructured Cellulose II Gel Consisting of Spherical Particles [J].
Beaumont, Marco ;
Rennhofer, Harald ;
Opietnik, Martina ;
Lichtenegger, Helga C. ;
Potthast, Antje ;
Rosenau, Thomas .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (08) :4424-4432
[4]   Cellulose aerogels from aqueous alkali hydroxide-urea solution [J].
Cai, Jie ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
CHEMSUSCHEM, 2008, 1 (1-2) :149-154
[5]   Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel [J].
Cai, Jie ;
Liu, Shilin ;
Feng, Jiao ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) :2076-2079
[6]   The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies [J].
Domingues, Rui M. A. ;
Gomes, Manuela E. ;
Reis, Rui L. .
BIOMACROMOLECULES, 2014, 15 (07) :2327-2346
[7]   Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography [J].
Gamelas, Jose A. F. ;
Pedrosa, Jorge ;
Lourenco, Ana F. ;
Ferreira, Paulo J. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 469 :36-41
[8]   Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures [J].
Ganesan, Kathirvel ;
Dennstedt, Anne ;
Barowski, Adam ;
Ratke, Lorenz .
MATERIALS & DESIGN, 2016, 92 :345-355
[9]   Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications [J].
Habibi, Youssef ;
Lucia, Lucian A. ;
Rojas, Orlando J. .
CHEMICAL REVIEWS, 2010, 110 (06) :3479-3500
[10]   Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge [J].
Han, Jingquan ;
Zhou, Chengjun ;
Wu, Yiqiang ;
Liu, Fangyang ;
Wu, Qinglin .
BIOMACROMOLECULES, 2013, 14 (05) :1529-1540