Solid solution strengthening in medium- to high-entropy alloys

被引:30
作者
Freudenberger, J. [1 ,2 ]
Utt, F. Thiel D. [3 ]
Albe, K. [3 ]
Kauffmann, A. [4 ]
Seils, S. [4 ]
Heilmaier, M. [4 ]
机构
[1] Leibniz IFW Dresden, Helmholtzstra 20, D-01069 Dresden, Germany
[2] TU Bergakademie Freiberg, Inst Mat Sci, Gustav Zeuner Stra 5, D-09599 Freiberg, Germany
[3] Tech Univ Darmstadt, Inst Mat, Otto Berndt Str 3, D-64287 Darmstadt, Germany
[4] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM WK, Engelbert Arnold Str 4, D-76131 Karlsruhe, Germany
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 861卷
关键词
High-entropy alloy; Precious metals; Solid solution strengthening; Mechanical properties; Microstructure; SHORT-RANGE ORDER;
D O I
10.1016/j.msea.2022.144271
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A fundamental understanding of the strength of multi-component alloys relies on well-defined experiments accompanied by accurate modelling. Whilst much work has been done so far for equi-atomic alloys, little has been done to investigate the effect of solid solution strengthening for alloys with deliberately adjusted, non-equimolar composition that are varied in certain concentration steps, including particularly continuous changes between equimolar subsets of alloy systems. This systematic approach is a key tool to verify or falsify current theories for solid solution strengthening for highly concentrated alloys. Series of alloys where a fifth element is alloyed to an equi-atomic four component alloy were prepared from Au, Cu, Ni, Pd and Pt, respectively. All investigated alloys form a single-phase solid solution, which is proven on a wide range of length scale by means of XRD, SEM and APT measurements. The mechanical properties of the series are compared to the predicted yield stresses calculated upon the model of Varvenne et al., (2017). The present results highlight coincident and discrepant results between experiment and model.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Chemical short range order strengthening in a model FCC high entropy alloy [J].
Antillon, E. ;
Woodward, C. ;
Rao, S., I ;
Akdim, B. ;
Parthasarathy, T. A. .
ACTA MATERIALIA, 2020, 190 :29-42
[2]   Combining experiments and modeling to explore the solid solution strengthening of high and medium entropy alloys [J].
Bracq, G. ;
Laurent-Brocq, M. ;
Varvenne, C. ;
Perriere, L. ;
Curtin, W. A. ;
Joubert, J. -M. ;
Guillot, I. .
ACTA MATERIALIA, 2019, 177 :266-279
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta-Nb-Mo-Cr-Ti-Al [J].
Chen, H. ;
Kauffmann, A. ;
Seils, S. ;
Boll, T. ;
Liebscher, C. H. ;
Harding, I. ;
Kumar, K. S. ;
Szabo, D. V. ;
Schlabach, S. ;
Kauffmann-Weiss, S. ;
Mueller, F. ;
Gorr, B. ;
Christ, H. -J. ;
Heilmaier, M. .
ACTA MATERIALIA, 2019, 176 :123-133
[5]   Face Centred Cubic Multi-Component Equiatomic Solid Solutions in the Au-Cu-Ni-Pd-Pt System [J].
Freudenberger, Jens ;
Rafaja, David ;
Geissler, David ;
Giebeler, Lars ;
Ullrich, Christiane ;
Kauffmann, Alexander ;
Heilmaier, Martin ;
Nielsch, Kornelius .
METALS, 2017, 7 (04)
[6]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474
[7]  
Gray T., 2022, PERIODIC TABLE
[8]  
Johnson K.L., 1985, Contact Mechanics, DOI [DOI 10.1017/CBO9781139171731, 10.1017/CBO9781139171731]
[9]   Exploring the compositional parameter space of high-entropy alloys using a diffusion couple approach [J].
Keil, Tom ;
Bruder, Enrico ;
Durst, Karsten .
MATERIALS & DESIGN, 2019, 176
[10]  
KOSTER W, 1948, Z METALLKD, V39, P111