A micro-bioimpedance meter for monitoring insulin bioavailability in personalized diabetes therapy

被引:15
作者
Arpaia, Pasquale [1 ,2 ]
Cesaro, Umberto [1 ]
Frosolone, Mirco [3 ]
Moccaldi, Nicola [1 ]
Taglialatela, Maurizio [4 ]
机构
[1] Univ Naples Federico II, CIRMIS Interdept Ctr Res Management & Innovat Hea, Naples, Italy
[2] Univ Naples Federico II, Dept Elect Engn & Informat Technol, Naples, Italy
[3] Univ Naples Federico II, Dept Publ Hlth & Prevent Med, Naples, Italy
[4] Univ Naples Federico II, Dept Neurosci & Reprod & Odontostomatol Sci, Naples, Italy
关键词
IN-VITRO; HUMAN SKIN;
D O I
10.1038/s41598-020-70376-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An on-chip transducer, for monitoring noninvasively the insulin bio-availability in real time after administration in clinical diabetology, is proposed. The bioavailability is assessed as insulin decrease in situ after administration by means of local impedance measurement. Inter-and-intra individual reproducibility is enhanced by a personalized model, specific for the subject, identified and validated during each insulin administration. Such a real-time noninvasive bioavailability measurement allows to increase the accuracy of insulin bolus administration, by attenuating drawbacks of glycemic swings significantly. In the first part of this paper, the concept, the architecture, and the operation of the transducer, as well as details about its prototype, are illustrated. Then, the metrological characterization and validation are reported in laboratory, in vitro on eggplants, ex vivo on pig abdominal non-perfused muscle, and in vivo on a human subject, using injection as a reference subcutaneous delivery of insulin. Results of significant intra-individual reproducibility in vitro and ex vivo point out noteworthy scenarios for assessing insulin bioavailability in clinical diabetology.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Current Diabetes Technology: Striving for the Artificial Pancreas [J].
Allen, Natalie ;
Gupta, Anshu .
DIAGNOSTICS, 2019, 9 (01)
[2]  
ANGRISANI L, 2018, J PHYS C SER, V1065, DOI DOI 10.1088/1742-6596/1065/13/132008
[3]   A Bioimpedance Meter to Measure Drug in Transdermal Delivery [J].
Arpaia, Pasquale ;
Cesaro, Umberto ;
Moccaldi, Nicola .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (10) :2324-2331
[4]   Noninvasive measurement of transdermal drug delivery by impedance spectroscopy [J].
Arpaia, Pasquale ;
Cesaro, Umberto ;
Moccaldi, Nicola .
SCIENTIFIC REPORTS, 2017, 7
[5]   Key considerations around the risks and consequences of hypoglycaemia in people with type 2 diabetes [J].
Barnett, A. H. ;
Cradock, S. ;
Fisher, M. ;
Hall, G. ;
Hughes, E. ;
Middleton, A. .
INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2010, 64 (08) :1121-1129
[6]   Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring [J].
Beach, RD ;
Von Küster, F ;
Moussy, F .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1999, 48 (06) :1239-1245
[7]   Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues [J].
Cabrera-Lopez, John-Jairo ;
Velasco-Medina, Jaime .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (02) :469-478
[8]   Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy [J].
Chen, Wei ;
Tian, Rui ;
Xu, Can ;
Yung, Bryant C. ;
Wang, Guohao ;
Liu, Yijing ;
Ni, Qianqian ;
Zhang, Fuwu ;
Zhou, Zijian ;
Wang, Jingjing ;
Niu, Gang ;
Ma, Ying ;
Fu, Liwu ;
Chen, Xiaoyuan .
NATURE COMMUNICATIONS, 2017, 8
[9]   Artificial Pancreas Past, Present, Future [J].
Cobelli, Claudio ;
Renard, Eric ;
Kovatchev, Boris .
DIABETES, 2011, 60 (11) :2672-2682
[10]  
Danby SG, 2016, CURR PROBL DERMATOL, V49, P47, DOI 10.1159/000441545