A large deviation theorem for a branching Brownian motion with random immigration

被引:1
作者
Sun, Hongyan [1 ]
机构
[1] Beijing Normal Univ, Sch Math, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Branching Brownian motion; Random immigration; Large deviation principle; Occupation time; LONG-RANGE DEPENDENCE; OCCUPATION TIMES; PARTICLE-SYSTEMS; SUPERPROCESSES; FLUCTUATIONS;
D O I
10.1016/j.spl.2013.03.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a large deviation theorem for a branching Brownian motion with random immigration under the annealed law for d >= 5, where the immigration is determined by another branching Brownian motion. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1559 / 1566
页数:8
相关论文
共 50 条
  • [31] On the density of branching Brownian motion
    Oz, Mehmet
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01): : 229 - 247
  • [32] Velocity of the L-branching Brownian motion
    Pain, Michel
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [33] A simple backward construction of branching Brownian motion with large displacement and applications
    Berestycki, Julien
    Brunet, Eric
    Cortines, Aser
    Mallein, Bastien
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2094 - 2113
  • [34] Moderate deviations for the quenched mean of the super-Brownian motion with random immigration
    HONG WenMing School of Mathematical Sciences
    [J]. ScienceinChina(SeriesA:Mathematics), 2008, (03) : 343 - 350
  • [35] Moderate deviations for the quenched mean of the super-Brownian motion with random immigration
    Hong Wenming
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (03): : 343 - 350
  • [36] A large deviation for occupation time of critical branching α-stable process
    Li QiuYue
    Ren YanXia
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1445 - 1456
  • [37] Moderate deviations for the quenched mean of the super-Brownian motion with random immigration
    WenMing Hong
    [J]. Science in China Series A: Mathematics, 2008, 51 : 343 - 350
  • [38] Conditional speed of branching Brownian motion, skeleton decomposition and application to random obstacles
    Oz, Mehmet
    Caglar, Mine
    Englander, Janos
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02): : 842 - 864
  • [39] Invariance principle for the maximal position process of branching Brownian motion in random environment
    Hou, Haojie
    Ren, Yan-Xia
    Song, Renming
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [40] Branching Brownian Motion Versus Random Energy Model in the Supercritical Phase: Overlap Distribution and Temperature Susceptibility
    Bonnefont, Benjamin
    Pain, Michel
    Zindy, Olivier
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (02)