A characterization of pseudoinvexity in multiobjective programming

被引:11
作者
Arana-Jimenez, M. [1 ]
Rufian-Liana, A. [2 ]
Osuna-Gomez, R. [2 ]
Ruiz-Garzon, G. [3 ]
机构
[1] Univ Cadiz, Escuela Super Ingn, Dept Estadist & Invest Operat, Cadiz 11003, Spain
[2] Univ Seville, Fac Matemat, Dept Estadist & Invest Operat, E-41012 Seville, Spain
[3] Univ Cadiz, Fac Ciencias, Dept Estadist & Invest Operat, Cadiz, Spain
关键词
Multiobjective programming; Invexity; Pseudoinvexity; Efficient solution; Weakly efficient solution; Vector critical point;
D O I
10.1016/j.mcm.2008.05.054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we introduce new classes of vector functions which generalize the class of scalar invex functions. We prove that these new classes of vector functions are characterized in such a way that every vector critical point is an efficient solution of a Multiobjective Programming Problem. We establish relationships between these new classes of functions and others used in the study of efficient and weakly efficient solutions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1719 / 1723
页数:5
相关论文
共 10 条
[1]   WHAT IS INVEXITY [J].
BENISRAEL, A ;
MOND, B .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :1-9
[2]   INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA [J].
CRAVEN, BD .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 24 (03) :357-366
[3]  
CRAVEN BD, 1977, B AUSTRALIAN MATH SO, V16, P325, DOI DOI 10.1017/S0004972700023431
[4]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[5]   Multiobjective programming under generalized type I invexity [J].
Hanson, MA ;
Pini, R ;
Singh, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (02) :562-577
[6]   NECESSARY CONDITIONS FOR OPTIMALITY OF NONDIFFERENTIABLE CONVEX MULTIOBJECTIVE PROGRAMMING [J].
KANNIAPPAN, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1983, 40 (02) :167-174
[7]   OPTIMALITY CRITERIA AND DUALITY IN MULTIPLE-OBJECTIVE OPTIMIZATION INVOLVING GENERALIZED INVEXITY [J].
KAUL, RN ;
SUNEJA, SK ;
SRIVASTAVA, MK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (03) :465-482
[8]  
Mangasarian L.O., 1969, NONLINEAR PROGRAMMIN
[9]   Invex functions and generalized convexity in multiobjective programming [J].
Osuna-Gomes, R ;
Rufian-Lizana, A ;
Ruiz-Canales, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (03) :651-661
[10]   Generalized convexity in multiobjective programming [J].
Osuna-Gómez, R ;
Beato-Moreno, A ;
Rufian-Lizana, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (01) :205-220