In this paper, so as to reproduce the dynamic recrystallization, the dislocation-crystal plasticity model devotes to a deformation analysis and multi-phase-field one to nucleus growth calculation. First, we place a few nuclei on the parent grain boundaries, i.e., high dislocation density site. Next, carrying out the simulation, dislocations start to accumulate in accordance with the deformation. Introducing the energy of dislocations stored locally in the matrix into the phase-field equation, the placed nuclei begin growing. In the region where the phase transitions from the matrix to the recrystallized phase, the values of dislocation density, crystal orientation and slip are reset. Moreover, applying the above information to the hardening modulus and crystal bases of the crystal plasticity model, the deformation is calculated again. With the progress of deformation, the dislocation density increases even inside the growing nuclei. Also, on the basis of the results obtained by the multiphysics simulation, we discuss the microstructure formations dependent on applied deformation.