Nonlinear dynamics of a quasi-one-dimensional helicoidal structure

被引:11
作者
Kiselev, V. V. [1 ]
Raskovalov, A. A. [1 ]
机构
[1] RAS, Inst Met Phys, Ural Branch, Ekaterinburg, Russia
关键词
helicoidal structure; sine-Gordon equation; Riemann problem; kink; breather; RIEMANN BOUNDARY-PROBLEM;
D O I
10.1007/s11232-012-0133-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analytically describe solitons and spin waves in the helicoidal structure of magnets without an inversion center using the "dressing" method in the framework of the sine-Gordon model. Analyzing the nonlinear dynamics of spin waves in the helicoidal-structure background reduces to solving linear integral equations on a Riemann surface generated by the superstructure. We obtain spectral expansions of integrals of motion with the soliton and spin-wave contributions separated.
引用
收藏
页码:1565 / 1586
页数:22
相关论文
共 24 条
[11]   TOPOLOGICAL DEFECTS IN INCOMMENSURATE MAGNETIC AND CRYSTAL-STRUCTURES AND QUASI-PERIODIC SOLUTIONS OF THE ELLIPTIC SINE-GORDON EQUATION [J].
BORISOV, AB ;
KISELIEV, VV .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 31 (01) :49-64
[12]  
Dubrovin B., 2001, Riemann Surfaces and Nonlinear equations. Regular and Chaotic Dynamics
[13]  
FILIPPOV BN, 1987, DYNAMIC EFFECTS FERR
[14]  
Izyumov Y., 1987, Neutron Diffraction on the Long-Period Magnetic Structures
[15]   Interaction of a breather with a magnetization wave in a ferromagnet with light-axis anisotropy [J].
Kiselev, V. V. ;
Raskovalov, A. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 163 (01) :479-495
[16]  
Kiselev VV, 2003, PHYS MET METALLOGR+, V95, pS28
[17]  
KOPPELMAN W, 1961, J MATH MECH, V10, P247
[18]  
Kuznetsov EA., 1974, Sov. Phys. JETP, V40, P855
[19]  
Lyuksyutov I. F., 1988, 2 DIMENSIONAL CRYSTA
[20]   THE LANDAU-LIFSCHITZ EQUATION AND THE RIEMANN BOUNDARY-PROBLEM ON A TORUS [J].
MIKHAILOV, AV .
PHYSICS LETTERS A, 1982, 92 (02) :51-55