Nonlinear dynamics of a quasi-one-dimensional helicoidal structure

被引:11
作者
Kiselev, V. V. [1 ]
Raskovalov, A. A. [1 ]
机构
[1] RAS, Inst Met Phys, Ural Branch, Ekaterinburg, Russia
关键词
helicoidal structure; sine-Gordon equation; Riemann problem; kink; breather; RIEMANN BOUNDARY-PROBLEM;
D O I
10.1007/s11232-012-0133-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analytically describe solitons and spin waves in the helicoidal structure of magnets without an inversion center using the "dressing" method in the framework of the sine-Gordon model. Analyzing the nonlinear dynamics of spin waves in the helicoidal-structure background reduces to solving linear integral equations on a Riemann surface generated by the superstructure. We obtain spectral expansions of integrals of motion with the soliton and spin-wave contributions separated.
引用
收藏
页码:1565 / 1586
页数:22
相关论文
共 24 条
[1]  
Akhiezer N. I., 1990, TRANSL MATH MONOGR, V79
[2]  
[Anonymous], 1971, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1975, COURSE THEORETICAL P
[4]  
[Anonymous], 1984, THEORY SOLITONS INVE
[5]  
Bateman H., 1955, Higher transcendental functions, California Institute of technology. Bateman Manuscript project
[6]   Magnetic soliton transport over topological spin texture in chiral helimagnet with strong easy-plane anisotropy [J].
Borisov, A. B. ;
Kishine, Jun-ichiro ;
Bostrem, I. G. ;
Ovchinnikov, A. S. .
PHYSICAL REVIEW B, 2009, 79 (13)
[7]  
Borisov A. B., 2009, ARXIV09011423V1CONDM
[8]  
Borisov A. B., 2011, NONLINEAR WAVES SOLI, V2
[9]   Vortex dipoles on a soliton lattice background: Solution of the boundary-value problem by inverse spectral transform [J].
Borisov, AB ;
Kiseliev, VV .
PHYSICA D, 1998, 111 (1-4) :96-128
[10]   MANY-SOLITON SOLUTIONS OF ASYMMETRIC CHIRAL SU(2) AND SL(2,R) THEORIES (D=1) [J].
BORISOV, AB ;
KISELEV, VV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1983, 54 (02) :160-167