Stationary points of O'Hara's knot energies

被引:16
作者
Blatt, Simon [2 ]
Reiter, Philipp [1 ]
机构
[1] Univ Freiburg, Abt Angew Math, D-79104 Freiburg, Germany
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
瑞士国家科学基金会;
关键词
INTEGRAL MENGER CURVATURE; MOBIUS ENERGY; FUNCTIONALS; EQUATION; FAMILY;
D O I
10.1007/s00229-011-0528-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the regularity of stationary points of the knot energies E ((alpha)) introduced by O'Hara (Topology 30(2):241-247, 1991; Topol Appl 48(2):147-161, 1992; Topol Appl 56(1):45-61, 1994) in the range . In a first step we prove that E ((alpha)) is C (1) on the set of all regular embedded curves belonging to and calculate its derivative. After that we use the structure of the Euler-Lagrange equation to study the regularity of stationary points of E ((alpha)) plus a positive multiple of the length. We show that stationary points of finite energy are of class C (a)-so especially all local minimizers of E ((alpha)) among curves with fixed length are smooth.
引用
收藏
页码:29 / 50
页数:22
相关论文
共 25 条
[1]   Circles minimize most knot energies [J].
Abrams, A ;
Cantarella, J ;
Fu, JHG ;
Ghomi, M ;
Howard, R .
TOPOLOGY, 2003, 42 (02) :381-394
[2]  
[Anonymous], 1996, DEGRUYTER SERIES NON
[3]  
Blatt S., 2011, J KNOT THEO IN PRESS
[4]  
Blatt S., 2011, CALC VAR IN PRESS
[5]  
Blatt S, 2011, PREPRINT
[6]  
Blatt S, GRADIENT FLOW UNPUB
[7]   DOES FINITE KNOT ENERGY LEAD TO DIFFERENTIABILITY? [J].
Blatt, Simon ;
Reiter, Philipp .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2008, 17 (10) :1281-1310
[8]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[9]  
COIFMAN R. R., 1978, ASTERISQUE, V57
[10]   MOBIUS ENERGY OF KNOTS AND UNKNOTS [J].
FREEDMAN, MH ;
HE, ZX ;
WANG, ZH .
ANNALS OF MATHEMATICS, 1994, 139 (01) :1-50