Modulation Bandwidth Enhancement of Monolithically Integrated Mutually Coupled Distributed Feedback Laser

被引:8
作者
Zhao, Wu [1 ,2 ,3 ]
Mao, Yuanfeng [1 ,2 ,3 ]
Lu, Dan [1 ,2 ,3 ]
Huang, Yongguang [1 ,2 ,3 ]
Zhao, Lingjuan [1 ,2 ,3 ]
Kan, Qiang [1 ,2 ,3 ]
Wang, Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Beijing Key Lab Low Dimens Semicond Mat & Devices, Beijing 100083, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 12期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
mutually coupled laser; modulation bandwidth; mutual injection locking; photon-photon resonance; SEMICONDUCTOR-LASERS; RESPONSE IMPROVEMENT; INJECTION LOCKING; DFB LASERS;
D O I
10.3390/app10124375
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modulation bandwidth enhancement of directly modulated semiconductor lasers (DMLs) has attracted broad interest to accommodate the tremendously growing demand for network traffic. In this paper, a monolithically integrated mutually coupled (IMC) laser for the O-band is demonstrated both numerically and experimentally. The direct modulation bandwidth was enhanced utilizing a photon-photon resonance (PPR) effect based on the mutual injection-locking technique. The IMC laser consisted of two distributed feedback (DFB) laser sections with a semiconductor optical amplifier (SOA) section in between. The relationship between the PPR frequency and SOA length was analyzed numerically to achieve a flat modulation response by optimizing the SOA length. Then, an enhanced 3-dB bandwidth of 38.7 GHz was realized experimentally, a nearly threefold enhancement over the modulation bandwidth of a solitary DFB laser at the same bias. Moreover, clear open eyes up to 40 Gb/s transmission over a 25-km single-mode fiber were achieved. Although the dynamic extinction ratio of the eye diagram was 1.1 dB, it can be further improved by increasing the mutual injection locking range of the IMC laser.
引用
收藏
页数:13
相关论文
共 35 条
  • [1] Integrated Two-Section Discrete Mode Laser
    Anandarajah, P. M.
    Latkowski, S.
    Browning, C.
    Zhou, R.
    O'Carroll, J.
    Phelan, R.
    Kelly, B.
    O'Gorman, J.
    Barry, L. P.
    [J]. IEEE PHOTONICS JOURNAL, 2012, 4 (06): : 2085 - 2094
  • [2] [Anonymous], 8023BS IEEE
  • [3] Nonlinear dynamics of semiconductor lasers with active optical feedback -: art. no. 016206
    Bauer, S
    Brox, O
    Kreissl, J
    Sartorius, B
    Radziunas, M
    Sieber, J
    Wünsche, HJ
    Henneberger, F
    [J]. PHYSICAL REVIEW E, 2004, 69 (01): : 10
  • [4] High-Power Long-Waveguide 1300-nm Directly Modulated DFB Laser for 45-Gb/s NRZ and 50-Gb/s PAM4
    Chen, Rih-You
    Chen, Yang-Jeng
    Chen, Cong-Long
    Wei, Chia-Chien
    Lin, Wei
    Chiu, Yi-Jen
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (24) : 2091 - 2094
  • [5] Modulation Response Improvement With Isolator-Free Injection-Locking
    Chow, W. W.
    Yang, Z. S.
    Vawter, G. A.
    Skogen, E. J.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (13) : 839 - 841
  • [6] Digital Modulation of Coherently-Coupled 2 x 1 Vertical-Cavity Surface-Emitting Laser Arrays
    Dave, Harshil
    Liao, Peicheng
    Fryslie, Stewart T. M.
    Gao, Zihe
    Thompson, Bradley J.
    Willner, Alan E.
    Choquette, Kent D.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (02) : 173 - 176
  • [7] 50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure
    Kobayashi, Wataru
    Ito, Toshio
    Yamanaka, Takayuki
    Fujisawa, Takeshi
    Shibata, Yasuo
    Kurosaki, Takeshi
    Kohtoku, Masaki
    Tadokoro, Takashi
    Sanjoh, Hiroaki
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
  • [8] Kreissl J., 2007, P EUR C OPT COMM C, P1
  • [9] Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL)
    Kreissl, Jochen
    Vercesi, Valeria
    Troppenz, Ute
    Gaertner, Tom
    Wenisch, Wolfgang
    Schell, Martin
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (05) : 362 - 364
  • [10] Lau E. K., 2006, PROC C OPT FIBER COM