The rapid self-reconstruction of Fe-modified Ni hydroxysulfide for efficient and stable large-current-density water/seawater oxidation

被引:190
作者
Huang, Chuqiang [1 ]
Zhou, Qiancheng [1 ]
Duan, Dingshuo [1 ]
Yu, Luo [4 ]
Zhang, Wei [5 ]
Wang, Zhouzhou [1 ]
Liu, Jin [1 ]
Peng, Bowen [1 ]
An, Pengfei [6 ]
Zhang, Jing [6 ]
Li, Liping [2 ]
Yu, Jiaguo [3 ]
Yu, Ying [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Inst Nanosci & Nanotechnol, Wuhan 430079, Peoples R China
[2] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[3] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, Wuhan 430079, Peoples R China
[4] Chinese Univ Hong Kong, Dept Chem, Shatin, Hong Kong 999077, Peoples R China
[5] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[6] Chinese Acad Sci Inst, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
EVOLUTION; SITES; CATALYST; DESIGN;
D O I
10.1039/d2ee01478e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reasonable design of electrocatalysts with rapid self-reconstruction for an efficient oxygen evolution reaction (OER) at commercially required current densities is highly desirable but very challenging. Herein, ultrathin Fe-modified Ni hydroxysulfide (Fe-NiSOH) nanosheet arrays were grown in situ on Ni foam via a simple two-step oxidation strategy for efficient and stable large-current-density water/seawater oxidation. Systematic insights, including experimental and theoretical analysis, reveal that in situ S leaching from the electrode boosts its self-reconstruction and results in the more-ready generation of highly active Ni4+ species, which benefits from a reduced formation energy. Owing to its excellent physical and chemical properties, the Fe-NiSOH catalyst requires only low overpotentials of 207, 240, and 268 mV in alkaline water to deliver current densities of 10, 100, and 500 mA cm(-2), respectively, and it can work stably for 1100 hours at the commercially required current density of 500 mA cm(-2). Furthermore, it also exhibits excellent seawater oxidation activity and superior resistance to Cr corrosion, since it can run stably at 500 mA cm(-2) for over 900 hours. This work offers an efficient strategy to build rapidly self-reconstructing electrocatalysts to promote the formation of highly oxidized metal species for efficient and stable water/seawater oxidation.
引用
收藏
页码:4647 / 4658
页数:12
相关论文
共 70 条
[1]   Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction** [J].
Bai, Lichen ;
Lee, Seunghwa ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3095-3103
[2]   Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution [J].
Bergmann, Arno ;
Martinez-Moreno, Elias ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE COMMUNICATIONS, 2015, 6
[3]   Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction [J].
Bo, Xin ;
Hocking, Rosalie K. ;
Zhou, Si ;
Li, Yibing ;
Chen, Xianjue ;
Zhuang, Jincheng ;
Du, Yi ;
Zhao, Chuan .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :4225-4237
[4]   One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi industrial water splitting at large-current-density [J].
Che, Qijun ;
Li, Qing ;
Tan, Ya ;
Chen, Xinhong ;
Xu, Xi ;
Chen, Yashi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 :337-348
[5]   Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting [J].
Chemelewski, William D. ;
Lee, Heung-Chan ;
Lin, Jung-Fu ;
Bard, Allen J. ;
Mullins, C. Buddie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (07) :2843-2850
[6]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[7]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972
[8]   Surface-Guided Formation of Amorphous Mixed-Metal Oxyhydroxides on Ultrathin MnO2 Nanosheet Arrays for Efficient Electrocatalytic Oxygen Evolution [J].
Fang, Ming ;
Han, Dong ;
Xu, Wen-Bo ;
Shen, Yun ;
Lu, Youming ;
Cao, Peijiang ;
Han, Shun ;
Xu, Wangying ;
Zhu, Deliang ;
Liu, Wenjun ;
Ho, Johnny C. .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)
[9]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[10]   Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations [J].
Garcia, Amanda C. ;
Touzalin, Thomas ;
Nieuwland, Celine ;
Perini, Nickson ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (37) :12999-13003