Design and Analysis of Beam Steering Multicore Fiber Optical Switches

被引:7
作者
Deakin, Callum [1 ]
Enrico, Michael [2 ]
Parsons, Nick [2 ]
Zervas, Georgios [1 ]
机构
[1] UCL, Opt Networks Grp, Dept Elect & Elect Engn, London WC1E 7JE, England
[2] Polatis Ltd, Cambridge CB4 0WN, England
基金
英国工程与自然科学研究理事会;
关键词
Beam steering; multicore fiber; optical fiber switches; CROSSTALK; TRANSMISSION; TECHNOLOGIES; MODE;
D O I
10.1109/JLT.2019.2896318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The design and performance characteristics of a beam steering optical switch for multicore fibers (MCFs) are reported. Port count, core count, transmission crosstalk, or a combination thereof can be optimized for the required application. Decreasing port separation or increasing the maximum steering angle both increase port count, whilst a higher core count or larger mode field diameter increase port capacity or port count, respectively, at the expense of greater intercore crosstalk. Potential losses from system misalignments and fiber fabrication variations in the core pitch are also estimated. A 50 port switch is possible for a 25 mu m core pitch 7 core hexagonal trench assisted MCF (TA-MCF) with a total mean statistical crosstalk on the central core of -25 dB after 1 km, assuming an operational wavelength of 1550 nm and maximum collimator actuator angle of 10 degrees. In contrast, a high capacity 25 mu m core pitch 61 core hexagonal TA-MCF can still offer up to a 5 port switch for the same level of crosstalk. For longer link distances, -25 dB crosstalk after 100 km (metro network) is achievable for a 50 port switch using a 35 mu m core pitch 7 core TA-MCF. Similar levels of crosstalk can be accomplished at 1000 km (core network) for a 41 port switch using a 25 mu m core pitch 7 core TA-MCF.
引用
收藏
页码:1954 / 1963
页数:10
相关论文
共 35 条
[1]  
[Anonymous], 2012, P EUR C EXH OPT COMM
[2]   REPRESENTATION OF GAUSSIAN BEAMS BY COMPLEX RAYS [J].
ARNAUD, J .
APPLIED OPTICS, 1985, 24 (04) :538-543
[3]   Capacity Trends and Limits of Optical Communication Networks [J].
Essiambre, Rene-Jean ;
Tkach, Robert W. .
PROCEEDINGS OF THE IEEE, 2012, 100 (05) :1035-1055
[4]   Joint Digital Signal Processing Receivers for Spatial Superchannels [J].
Feuer, Mark D. ;
Nelson, Lynn E. ;
Zhou, Xiang ;
Woodward, Sheryl L. ;
Isaac, Rejoy ;
Zhu, Benyuan ;
Taunay, Thierry F. ;
Fishteyn, Michael ;
Fini, John Michael ;
Yan, Man F. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (21) :1957-1960
[5]   Modeling physical optics phenomena by complex ray tracing [J].
Harvey, James E. ;
Irvin, Ryan G. ;
Pfisterer, Richard N. .
OPTICAL ENGINEERING, 2015, 54 (03)
[6]  
Hayashi T., 2011, P OPT FIB COMM C EXP
[7]  
Hayashi T., 2017, P EUR C EXH OPT COMM
[8]   Six-Mode 19-Core Fiber With 114 Spatial Modes for Weakly-Coupled Mode-Division-Multiplexed Transmission [J].
Hayashi, Tetsuya ;
Nagashima, Takuji ;
Yonezawa, Kazuhiro ;
Wakayama, Yuta ;
Soma, Daiki ;
Igarashi, Koji ;
Tsuritani, Takehiro ;
Taru, Toshiki ;
Sasaki, Takashi .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (04) :748-754
[9]   Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber [J].
Hayashi, Tetsuya ;
Taru, Toshiki ;
Shimakawa, Osamu ;
Sasaki, Takashi ;
Sasaoka, Eisuke .
OPTICS EXPRESS, 2011, 19 (17) :16576-16592
[10]   GAUSSIAN-BEAM RAY-EQUIVALENT MODELING AND OPTICAL DESIGN [J].
HERLOSKI, R ;
MARSHALL, S ;
ANTOS, R .
APPLIED OPTICS, 1983, 22 (08) :1168-1174