共 50 条
The cluster bootstrap consistency in generalized estimating equations
被引:41
作者:
Cheng, Guang
[1
]
Yu, Zhuqing
[1
]
Huang, Jianhua Z.
[2
]
机构:
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Texas A&M Univ, College Stn, TX 77843 USA
基金:
美国国家科学基金会;
关键词:
Bootstrap consistency;
Clustered/longitudinal data;
Exchangeably weighted cluster bootstrap;
Generalized estimating equations;
One-step bootstrap;
LINEAR-MODELS;
LONGITUDINAL DATA;
D O I:
10.1016/j.jmva.2012.09.003
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference. Published by Elsevier Inc.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条