The cluster bootstrap consistency in generalized estimating equations

被引:45
作者
Cheng, Guang [1 ]
Yu, Zhuqing [1 ]
Huang, Jianhua Z. [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Texas A&M Univ, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Bootstrap consistency; Clustered/longitudinal data; Exchangeably weighted cluster bootstrap; Generalized estimating equations; One-step bootstrap; LINEAR-MODELS; LONGITUDINAL DATA;
D O I
10.1016/j.jmva.2012.09.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The cluster bootstrap resamples clusters or subjects instead of individual observations in order to preserve the dependence within each cluster or subject. In this paper, we provide a theoretical justification of using the cluster bootstrap for the inferences of the generalized estimating equations (GEE) for clustered/longitudinal data. Under the general exchangeable bootstrap weights, we show that the cluster bootstrap yields a consistent approximation of the distribution of the regression estimate, and a consistent approximation of the confidence sets. We also show that a computationally more efficient one-step version of the cluster bootstrap provides asymptotically equivalent inference. Published by Elsevier Inc.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
[21]   A Comparison of Correlation Structure Selection Penalties for Generalized Estimating Equations [J].
Westgate, Philip M. ;
Burchett, Woodrow W. .
AMERICAN STATISTICIAN, 2017, 71 (04) :344-353
[22]   Generalized Estimating Equations Notes on the Choice of the Working Correlation Matrix [J].
Ziegler, A. ;
Vens, M. .
METHODS OF INFORMATION IN MEDICINE, 2010, 49 (05) :421-425
[23]   Cutpoint selection for discretizing a continuous covariate for generalized estimating equations [J].
Tunes-da-Silva, Gisela ;
Klein, John P. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) :226-235
[24]   Modelling heterogeneity in longitudinal binomial responses by generalized estimating equations [J].
Zhang, X. ;
Paul, S. ;
Li, D. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (10) :1912-1920
[25]   Variable selection in generalized estimating equations via empirical likelihood and Gaussian pseudo-likelihood [J].
Xu, Jianwen ;
Zhang, Jiamao ;
Fu, Liya .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (04) :1239-1250
[26]   Modified robust variance estimator for generalized estimating equations with improved small-sample performance [J].
Wang, Ming ;
Long, Qi .
STATISTICS IN MEDICINE, 2011, 30 (11) :1278-1291
[27]   Generalized estimating equations in cluster randomized trials with a small number of clusters: Review of practice and simulation study [J].
Huang, Shuang ;
Fiero, Mallorie H. ;
Bell, Melanie L. .
CLINICAL TRIALS, 2016, 13 (04) :445-449
[28]   Extended generalized estimating equations for clustered data [J].
Hall, DB ;
Severini, TA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (444) :1365-1375
[29]   Review of Generalized Estimating Equations by Hardin and Hilbe [J].
Stillman, Steven .
STATA JOURNAL, 2003, 3 (02) :208-210
[30]   Assessing the validity of weighted generalized estimating equations [J].
Qu, A. ;
Yi, G. Y. ;
Song, P. X. -K. ;
Wang, P. .
BIOMETRIKA, 2011, 98 (01) :215-224