Global existence and uniform decay for the one-dimensional model of thermodiffusion with second sound

被引:3
|
作者
Zhang, Ming [1 ]
Qin, Yuming [2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Dept Appl Math, Shanghai 201620, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2013年
关键词
thermodiffusion; second sound; global existence; exponential decay; DYNAMICAL PROBLEM;
D O I
10.1186/1687-2770-2013-222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate an initial boundary value problem for the one-dimensional linear model of thermodiffusion with second sound in a bounded region. Using the semigroup approach, boundary control and the multiplier method, we obtain the existence of global solutions and the uniform decay estimates for the energy.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] EXPONENTIAL DECAY OF THE ENERGY OF A ONE-DIMENSIONAL NONHOMOGENEOUS MEDIUM
    KIM, JU
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) : 368 - 380
  • [32] A new exponential decay result for one-dimensional porous dissipation elasticity from second spectrum viewpoint
    Ramos, A. J. A.
    Almeida Junior, D. S.
    Freitas, M. M.
    Dos Santos, M. J.
    APPLIED MATHEMATICS LETTERS, 2020, 101
  • [33] Exponential decay for a neutral one-dimensional viscoelastic equation
    Tatar, Nasser-eddine
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 625 - 635
  • [34] GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SOLUTIONS TO THE QUASILINEAR THERMO-DIFFUSION EQUATIONS WITH SECOND SOUND
    Qin, Yuming
    Li, Haiyan
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 759 - 778
  • [35] GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SOLUTIONS TO THE QUASILINEAR THERMO-DIFFUSION EQUATIONS WITH SECOND SOUND
    秦玉明
    李海燕
    Acta Mathematica Scientia, 2014, 34 (03) : 759 - 778
  • [36] Exponential decay in one-dimensional type II thermoviscoelasticity with voids
    Miranville, Alain
    Quintanilla, Ramon
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [37] One-dimensional chemotaxis kinetic model
    Tabar, Mohsen Sharifi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (02): : 139 - 172
  • [38] Exponential decay in one-dimensional porous-thereto-elasticity
    Casas, PS
    Quintanilla, R
    MECHANICS RESEARCH COMMUNICATIONS, 2005, 32 (06) : 652 - 658
  • [39] Exponential decay in one-dimensional type III thermoelasticity with voids
    Miranville, Alain
    Quintanilla, Ramon
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 30 - 37
  • [40] Global existence, uniform decay and blow-up of solutions for a system of Petrovsky equations
    Li, Gang
    Sun, Yanan
    Liu, Wenjun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1523 - 1538