Explicit Solutions for Root Optimization of a Polynomial Family With One Affine Constraint

被引:13
作者
Blondel, Vincent D. [1 ]
Gurbuzbalaban, Mert [2 ]
Megretski, Alexandre [3 ]
Overton, Michael L. [2 ]
机构
[1] Catholic Univ Louvain, Dept Engn Math, B-1348 Louvain, Belgium
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] MIT, Dept Elect Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Control system synthesis; optimization; output feedback; polynomials; stability; FEEDBACK STABILIZATION; SYSTEMS; MATRIX;
D O I
10.1109/TAC.2012.2202069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a family of real or complex monic polynomials of fixed degree with one affine constraint on their coefficients, consider the problem of minimizing the root radius (largest modulus of the roots) or root abscissa (largest real part of the roots). We give constructive methods for efficiently computing the globally optimal value as well as an optimal polynomial when the optimal value is attained and an approximation when it is not. An optimal polynomial can always be chosen to have at most two distinct roots in the real case and just one distinct root in the complex case. Examples are presented illustrating the results, including several fixed-order controller optimal design problems.
引用
收藏
页码:3078 / 3089
页数:12
相关论文
共 21 条
  • [1] OUTPUT FEEDBACK STABILIZATION AND RELATED PROBLEMS - SOLUTION VIA DECISION METHODS
    ANDERSON, BD
    BOSE, NK
    JURY, EI
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1975, AC20 (01) : 53 - 66
  • [2] [Anonymous], P 5 IFAC S ROB CONTR
  • [3] [Anonymous], 1996, Die Grundlehren der mathematischen Wissenschaften
  • [4] [Anonymous], AM MATH SOC
  • [5] Barmish B. R, 1993, New Tools for Robustness of Linear Systems
  • [6] Survey on the State of Systems and Control
    Blondel, Vincent
    Gevers, Michel
    Lindquist, Anders
    [J]. EUROPEAN JOURNAL OF CONTROL, 1995, 1 (01) : 5 - 23
  • [7] Blondel Vincent., 1994, LECT NOTES CONTROL I, V191
  • [8] Explicit Solutions for Root Optimization of a Polynomial Family
    Blondel, Vincent D.
    Gurbuzbalaban, Mert
    Megretski, Alexander
    Overton, Michael L.
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 485 - 488
  • [9] Stabilization via nonsmooth, nonconvex optimization
    Burke, James V.
    Henrion, Didier
    Lewis, Adrian S.
    Overton, Michael L.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (11) : 1760 - 1769
  • [10] Variational analysis of the abscissa mapping for polynomials via the Gauss-Lucas Theorem
    Burke, JV
    Lewis, AS
    Overton, ML
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2004, 28 (3-4) : 259 - 268