Dirichlet's principle and wellposedness of solutions for a nonlocal p-Laplacian system

被引:28
作者
Hinds, Brittney [1 ]
Radu, Petronela [1 ]
机构
[1] Univ Nebraska, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
Peridynamics; Dirichlet's principle; Nonlocal p-Laplacian; Singular kernel; EVOLUTION EQUATION; MODEL;
D O I
10.1016/j.amc.2012.07.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Dirichlet's principle for a nonlocal p-Laplacian system which arises in the nonlocal setting of peridynamics when p = 2. This nonlinear model includes boundary conditions imposed on a nonzero volume collar surrounding the domain. Our analysis uses nonlocal versions of integration by parts techniques that resemble the classical Green and Gauss identities. The nonlocal energy functional associated with this "elliptic'' type system exhibits a general kernel which could be weakly singular. The coercivity of the system is shown by employing a nonlocal Poincare's inequality. We use the direct method in calculus of variations to show existence and uniqueness of minimizers for the nonlocal energy, from which we obtain the wellposedness of this steady state diffusion system. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1411 / 1419
页数:9
相关论文
共 26 条
[1]   Variational theory and domain decomposition for nonlocal problems [J].
Aksoylu, Burak ;
Parks, Michael L. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (14) :6498-6515
[2]   RESULTS ON NONLOCAL BOUNDARY VALUE PROBLEMS [J].
Aksoylu, Burak ;
Mengesha, Tadele .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (12) :1301-1317
[3]   Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation [J].
Alali, Bacim ;
Lipton, Robert .
JOURNAL OF ELASTICITY, 2012, 106 (01) :71-103
[4]   A nonlocal p-Laplacian evolution equation with Neumann boundary conditions [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02) :201-227
[5]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[6]   The limit as p → ∞ in a nonlocal p-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (03) :279-316
[7]  
Andreu F., 2010, NONLOCAL DIFFUSION P
[8]   The Neumann problem for nonlocal nonlinear diffusion equations [J].
Andreu, Fuensanta ;
Mazon, Jose M. ;
Rossi, Julio D. ;
Toledo, Julian .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) :189-215
[9]  
[Anonymous], 2003, SOBOLEV SPACES
[10]   CAN THE NONLOCAL CHARACTERIZATION OF SOBOLEV SPACES BY BOURGAIN ET AL. BE USEFUL FOR SOLVING VARIATIONAL PROBLEMS? [J].
Aubert, Gilles ;
Kornprobst, Pierre .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :844-860