There are several statistical downscaling methods available for generating local-scale meteorological variables from large-scale model outputs. There is still no universal single method, or group of methods, that is clearly superior, particularly for downscaling daily precipitation. This paper compares different statistical methods for downscaling daily precipitation from numerical weather prediction model output. Three different methods are considered: (i) hybrids; (ii) neural networks; and (iii) nearest neighbor-based approaches. These methods are implemented in the Saguenay watershed in northeastern Canada. Suites of standard diagnostic measures are computed to evaluate and inter-compare the performances of the downscaling models. Although results of the downscaling experiment show mixed performances, clear patterns emerge with respect to the reproduction of variation in daily precipitation and skill values. Artificial neural network-logistic regression (ANN-Logst), partial least squares (PLS) regression and recurrent multilayer perceptron (RMLP) models yield greater skill values, and conditional resampling method (SDSM) and K-nearest neighbor (KNN)-based models show the potential to capture the variability in daily precipitation.
机构:
Chinese Acad Sci, Cold & Arid Regions Environm & Engn Res Inst, State Key Lab Cryospher Sci, 320 West Donggang Rd, Lanzhou 730000, Gansu, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Cold & Arid Regions Environm & Engn Res Inst, State Key Lab Cryospher Sci, 320 West Donggang Rd, Lanzhou 730000, Gansu, Peoples R China
Yang, Chunli
Wang, Ninglian
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Cold & Arid Regions Environm & Engn Res Inst, State Key Lab Cryospher Sci, 320 West Donggang Rd, Lanzhou 730000, Gansu, Peoples R China
CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing, Peoples R ChinaChinese Acad Sci, Cold & Arid Regions Environm & Engn Res Inst, State Key Lab Cryospher Sci, 320 West Donggang Rd, Lanzhou 730000, Gansu, Peoples R China
Wang, Ninglian
Wang, Shijin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Cold & Arid Regions Environm & Engn Res Inst, State Key Lab Cryospher Sci, 320 West Donggang Rd, Lanzhou 730000, Gansu, Peoples R ChinaChinese Acad Sci, Cold & Arid Regions Environm & Engn Res Inst, State Key Lab Cryospher Sci, 320 West Donggang Rd, Lanzhou 730000, Gansu, Peoples R China
机构:
Univ Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, Chile
Bionostra Chile Res Fdn, Almirante Lynch 1179, Santiago 8920033, ChileUniv Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, Chile
Araya-Osses, Daniela
Casanueva, Ana
论文数: 0引用数: 0
h-index: 0
机构:
MeteoSwiss, Fed Off Meteorol & Climatol, CH-8058 Zurich, Switzerland
Univ Cantabria, Dept Appl Math & Comp Sci, Meteorol Grp, Santander 39005, SpainUniv Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, Chile
Casanueva, Ana
Roman-Figueroa, Celian
论文数: 0引用数: 0
h-index: 0
机构:
Bionostra Chile Res Fdn, Almirante Lynch 1179, Santiago 8920033, Chile
Univ La Frontera, Doctoral Program Sci Nat Resources, Av Francisco Salazar 01145, Temuco 4811230, ChileUniv Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, Chile
Roman-Figueroa, Celian
Manuel Uribe, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, ChileUniv Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, Chile
Manuel Uribe, Juan
Paneque, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, ChileUniv Chile, Fac Ciencias Agron, Santa Rosa 11315, Santiago 8820808, Chile