Large induced forests in planar graphs with girth 4

被引:5
作者
Dross, Francois [1 ]
Montassier, Mickael [1 ]
Pinlou, Alexandre [1 ]
机构
[1] Univ Montpellier, LIRMM, 161 Rue Ada, F-34095 Montpellier 5, France
关键词
Planar graphs; Triangle-free planar graphs; Induced forests; Feedback vertex sets; Albertson-Berman conjecture;
D O I
10.1016/j.dam.2018.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new lower bound on the order of a largest induced forest in planar graphs with girth 4. We prove that a triangle-free planar graph of order n admits an induced forest of order at least 6n+7/11 , improving the lower bound of Salavatipour (2006). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 106
页数:11
相关论文
共 14 条
[1]   MAXIMUM INDUCED FORESTS OF PLANAR GRAPHS [J].
AKIYAMA, J ;
WATANABE, M .
GRAPHS AND COMBINATORICS, 1987, 3 (02) :201-202
[2]  
Albertson M.O., 1979, GRAPH THEORY RELATED
[3]  
Albertson M.O., 1998, PROBLEM RAISED DIMAC
[4]   Large induced forests in sparse graphs [J].
Alon, N ;
Mubayi, D ;
Thomas, R .
JOURNAL OF GRAPH THEORY, 2001, 38 (03) :113-123
[5]  
Alon N., 2003, DISCRETE MATH
[6]  
[Anonymous], 1972, P COMPLEXITY COMPUTE
[7]  
BORODIN OV, 1976, DOKL AKAD NAUK SSSR+, V231, P18
[8]   Short Proofs of Some Extremal Results [J].
Conlon, David ;
Fox, Jacob ;
Sudakov, Benny .
COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (01) :8-28
[9]   Minimum feedback vertex set and acyclic coloring [J].
Fertin, G ;
Godard, E ;
Raspaud, A .
INFORMATION PROCESSING LETTERS, 2002, 84 (03) :131-139
[10]  
Hosono K., 1990, Proc. Fac. Sci. Tokai Univ., V25, P27