Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches

被引:114
作者
Dong Van Dao [1 ]
Son Hoang Trinh [1 ]
Hai-Bang Ly [1 ]
Binh Thai Pham [1 ]
机构
[1] Univ Transport Technol, Hanoi 100000, Vietnam
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 06期
关键词
compressive strength; geopolymer concrete; adaptive network-based fuzzy inference system; artificial intelligence; ACTIVATED FLY-ASH; GENETIC ALGORITHM; NEURAL-NETWORK; CORROSION-RESISTANCE; DRYING SHRINKAGE; HIGH-PERFORMANCE; METAKAOLIN; ANFIS; MODEL; OPTIMIZATION;
D O I
10.3390/app9061113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Geopolymer concrete (GPC) is applied successfully in the construction of civil engineering structures. This outcome confirmed that GPC can be used as an alternative material to conventional ordinary Portland cement concrete (OPC). Recent investigations were attempted to incorporate recycled aggregates into GPC to reduce the use of natural materials such as stone and sand. However, traditional methodology used to predict compressive strength and to find out an optimum mix for GPC is yet to be formulated, especially in cases of GPC using by-products as aggregates. In this study, we propose novel hybrid artificial intelligence (AI) approaches, namely a particle swarm optimization (PSO)-based adaptive network-based fuzzy inference system (PSOANFIS) and a genetic algorithm (GA)-based adaptive network-based fuzzy inference system (GAANFIS) to predict the 28-day compressive strength of GPC containing 100% waste slag aggregates. To construct and validate these models, 21 different mixes with 210 specimens were casted and tested. Three input parameters were used to predict the tested compressive strength of GPC, i.e., the sodium solution (NaOH) concentration (varied from 10 to 14 M), the mass ratio of alkaline activation solution to fly ash (AAS/FA), ranging from 0.4 to 0.5, and the mass ratio of sodium silicate (Na2SiO3) to sodium hydroxide solution (SS/SH) which was varied from 2 to 3. The compressive strength of the fabricated GPC was used as output parameter for the prediction models. Validation of the models was done using several statistical criteria such as mean absolute error (MAE), root-mean-square error (RMSE), and correlation coefficient (R). The results show that the PSOANFIS and GAANFIS models have strong potential for predicting the 28-day compressive strength of GPC, but the PSOANFIS (MAE = 1.847 MPa, RMSE = 2.251 MPa, and R = 0.934) was slightly better than the GAANFIS (MAE = 2.115 MPa, RMSE = 2.531 MPa, and R = 0.927). This study will help in reducing the time and cost for the implementation of laboratory experiments in designing the optimum proportions of GPC.
引用
收藏
页数:16
相关论文
共 63 条
[1]  
[Anonymous], 2005, Development and Properties of Low-Calcium Fly Ash Based Geopolymer Concrete
[2]   Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption [J].
Azadeh, A. ;
Ghaderi, S. F. ;
Tarverdian, S. ;
Saberi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1731-1741
[3]   Using neural networks to predict workability of concrete incorporating metakaolin and fly ash [J].
Bai, J ;
Wild, S ;
Ware, JA ;
Sabir, BB .
ADVANCES IN ENGINEERING SOFTWARE, 2003, 34 (11-12) :663-669
[4]   Artificial neural network for predicting drying shrinkage of concrete [J].
Bal, Lyes ;
Buyle-Bodin, Francois .
CONSTRUCTION AND BUILDING MATERIALS, 2013, 38 :248-254
[5]   Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm [J].
Barak, Sasan ;
Sadegh, S. Saeedeh .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2016, 82 :92-104
[6]   Hybrid ANFIS-PSO approach for predicting optimum parameters of a protective spur dike [J].
Basser, Hossein ;
Karami, Hojat ;
Shamshirband, Shahaboddin ;
Akib, Shatirah ;
Amirmojahedi, Mohsen ;
Ahmad, Rodina ;
Jahangirzadeh, Afshin ;
Javidnia, Hossein .
APPLIED SOFT COMPUTING, 2015, 30 :642-649
[7]   Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network [J].
Bilim, Cahit ;
Atis, Cengiz D. ;
Tanyildizi, Harun ;
Karahan, Okan .
ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (05) :334-340
[8]   Properties of alkali-activated fly ash: high performance to lightweight [J].
Brooks, Robert ;
Bahadory, Mozhgan ;
Tovia, Fernando ;
Rostami, Hossein .
INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2010, 3 (03) :211-218
[9]   Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks [J].
Chandwani, Vinay ;
Agrawal, Vinay ;
Nagar, Ravindra .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (02) :885-893
[10]   Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling [J].
Chen, Wei ;
Panahi, Mahdi ;
Pourghasemi, Hamid Reza .
CATENA, 2017, 157 :310-324