Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches

被引:105
|
作者
Dong Van Dao [1 ]
Son Hoang Trinh [1 ]
Hai-Bang Ly [1 ]
Binh Thai Pham [1 ]
机构
[1] Univ Transport Technol, Hanoi 100000, Vietnam
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 06期
关键词
compressive strength; geopolymer concrete; adaptive network-based fuzzy inference system; artificial intelligence; ACTIVATED FLY-ASH; GENETIC ALGORITHM; NEURAL-NETWORK; CORROSION-RESISTANCE; DRYING SHRINKAGE; HIGH-PERFORMANCE; METAKAOLIN; ANFIS; MODEL; OPTIMIZATION;
D O I
10.3390/app9061113
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Geopolymer concrete (GPC) is applied successfully in the construction of civil engineering structures. This outcome confirmed that GPC can be used as an alternative material to conventional ordinary Portland cement concrete (OPC). Recent investigations were attempted to incorporate recycled aggregates into GPC to reduce the use of natural materials such as stone and sand. However, traditional methodology used to predict compressive strength and to find out an optimum mix for GPC is yet to be formulated, especially in cases of GPC using by-products as aggregates. In this study, we propose novel hybrid artificial intelligence (AI) approaches, namely a particle swarm optimization (PSO)-based adaptive network-based fuzzy inference system (PSOANFIS) and a genetic algorithm (GA)-based adaptive network-based fuzzy inference system (GAANFIS) to predict the 28-day compressive strength of GPC containing 100% waste slag aggregates. To construct and validate these models, 21 different mixes with 210 specimens were casted and tested. Three input parameters were used to predict the tested compressive strength of GPC, i.e., the sodium solution (NaOH) concentration (varied from 10 to 14 M), the mass ratio of alkaline activation solution to fly ash (AAS/FA), ranging from 0.4 to 0.5, and the mass ratio of sodium silicate (Na2SiO3) to sodium hydroxide solution (SS/SH) which was varied from 2 to 3. The compressive strength of the fabricated GPC was used as output parameter for the prediction models. Validation of the models was done using several statistical criteria such as mean absolute error (MAE), root-mean-square error (RMSE), and correlation coefficient (R). The results show that the PSOANFIS and GAANFIS models have strong potential for predicting the 28-day compressive strength of GPC, but the PSOANFIS (MAE = 1.847 MPa, RMSE = 2.251 MPa, and R = 0.934) was slightly better than the GAANFIS (MAE = 2.115 MPa, RMSE = 2.531 MPa, and R = 0.927). This study will help in reducing the time and cost for the implementation of laboratory experiments in designing the optimum proportions of GPC.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete
    Dong Van Dao
    Hai-Bang Ly
    Son Hoang Trinh
    Tien-Thinh Le
    Binh Thai Pham
    MATERIALS, 2019, 12 (06)
  • [2] Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites
    Yaswanth, K. K.
    Revathy, J.
    Gajalakshmi, P.
    COMPUTERS AND CONCRETE, 2021, 28 (01) : 55 - 68
  • [3] Prediction of compressive strength in plain and blended cement concretes using a hybrid artificial intelligence model
    Al-Jamimi, Hamdi A.
    Al-Kutti, Walid A.
    Alwahaishi, Saleh
    Alotaibi, Khalid Saqer
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [4] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [5] Prediction of Concrete Compressive Strength Using Artificial Intelligence Methods
    Muliauwan, H. N.
    Prayogo, D.
    Gaby, G.
    Harsono, K.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE INFRASTRUCTURE, 2020, 1625
  • [6] Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models
    Khan, Kaffayatullah
    Salami, Babatunde Abiodun
    Iqbal, Mudassir
    Amin, Muhammad Nasir
    Ahmed, Fahim
    Jalal, Fazal E.
    MATERIALS, 2022, 15 (10)
  • [7] Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS
    Britto, John X.
    Muthuraj, M. P.
    STRUCTURAL ENGINEERING AND MECHANICS, 2019, 70 (06) : 671 - 681
  • [8] Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches
    Ullah, Haji Sami
    Khushnood, Rao Arsalan
    Farooq, Furqan
    Ahmad, Junaid
    Vatin, Nikolai Ivanovich
    Ewais, Dina Yehia Zakaria
    MATERIALS, 2022, 15 (09)
  • [9] Prediction of compressive strength of geopolymer concrete using machine learning techniques
    Gupta, Tanuja
    Rao, Meesala Chakradhara
    STRUCTURAL CONCRETE, 2022, 23 (05) : 3073 - 3090
  • [10] Prediction of Geopolymer Concrete Compressive Strength Using Convolutional Neural Networks
    Ramujee, Kolli
    Sadula, Pooja
    Madhu, Golla
    Kautish, Sandeep
    Almazyad, Abdulaziz S.
    Xiong, Guojiang
    Mohamed, Ali Wagdy
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (02): : 1455 - 1486