Monte Carlo simulation of X-ray emission using the general-purpose code PENELOPE

被引:38
作者
Llovet, X
Fernández-Varea, JM
Sempau, J
Salvat, F
机构
[1] Univ Barcelona, Fac Fis ECM, IEC, E-08028 Barcelona, Spain
[2] Univ Barcelona, Serv Cient Tecn, IEC, E-08028 Barcelona, Spain
[3] Univ Politecn Catalunya, Inst Tecn Energet, IEC, E-08028 Barcelona, Spain
关键词
PENELOPE code; Monte Carlo; electron transport; X-ray emission;
D O I
10.1002/sia.2096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
PENELOPE is a general-purpose Monte Carlo code system for the simulation of coupled electron and photon transport. It is applicable to all materials and covers the energy range from 50 eV up to 1 GeV. The code implements the most reliable cross sections and relaxation data available for the elements. Cross sections for molecules are generated by adding the atomic cross sections of the constituent atoms. The simulation of electron and positron histories is performed by using a mixed, class II, scheme; hard interactions are simulated individually, whereas the effect of soft interactions is described using multiple-scattering approximations. The code includes a flexible geometry package for automatic tracking of particles in complex geometries consisting of homogeneous bodies limited by quadric surfaces. In this article, we describe briefly the interaction models and transport algorithms implemented in PENELOPE and present results of simulations of X-ray generation by electron beams. Copyright (C) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1054 / 1058
页数:5
相关论文
共 50 条
  • [21] Monte Carlo simulation of the effects of anode surface roughness on x-ray spectra
    Kakonyi, Robert
    Erdelyi, Miklos
    Szabo, Gabor
    MEDICAL PHYSICS, 2010, 37 (11) : 5737 - 5745
  • [22] X-ray microanalysis of real materials using Monte Carlo simulations
    Gauvin, R
    Lifshin, E
    MICROCHIMICA ACTA, 2004, 145 (1-4) : 41 - 47
  • [23] PENGEOM-A general-purpose geometry package for Monte Carlo simulation of radiation transport in material systems defined by quadric surfaces
    Almansa, Julio
    Salvat-Pujol, Francesc
    Diaz-Londono, Gloria
    Carnicer, Artur
    Lallena, Antonio M.
    Salvat, Francesc
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 199 : 102 - 113
  • [24] Application of the Monte Carlo codes PENELOPE and MCNP5 to unfold X-ray spectra in the diagnostic energy range
    Gallardo, Sergio
    Querol, Andrea
    Pozuelo, Fausto
    Verdu, Gumersindo
    Rodenas, Jose
    RADIATION PHYSICS AND CHEMISTRY, 2014, 95 : 166 - 169
  • [25] Monte-Carlo simulation of a slot-scanning X-ray imaging system
    Kulkarni, Mayuresh
    Dendere, Ronald
    Nicolls, Fred
    Steiner, Stef
    Douglas, Tania S.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (01): : 284 - 289
  • [26] Mammography X-ray spectra simulated with Monte Carlo
    Vega-Carrillo, H. R.
    Gonzalez, J. Ramirez
    Manzanares-Acuna, E.
    Hernandez-Davila, V. M.
    Villasana, R. Hernandez
    Mercado, G. A.
    MEDICAL PHYSICS, 2008, 1032 : 208 - 211
  • [27] MONTE CARLO METHOD FOR RADIOLOGICAL X-RAY EXAMINATIONS
    Fulea, D.
    Cosma, C.
    Pop, I. G.
    ROMANIAN JOURNAL OF PHYSICS, 2009, 54 (7-8): : 629 - 639
  • [28] A comprehensive study on the photon energy response of RadFET dosimeters using the PENELOPE Monte Carlo code
    Kahraman, A.
    Kaya, S.
    Jaksic, A.
    Yilmaz, E.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2015, 170 (05): : 367 - 376
  • [29] Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework
    Dunkerley, David A. P.
    Tomkowiak, Michael T.
    Slagowski, Jordan M.
    McCabe, Bradley P.
    Funk, Tobias
    Speidel, Michael A.
    MEDICAL IMAGING 2015: PHYSICS OF MEDICAL IMAGING, 2015, 9412
  • [30] Calculation of the modulation transfer function for the X-ray imaging detector DIXI using Monte Carlo simulation data
    del Risco Norrlid, L
    Rönnqvist, C
    Fransson, K
    Brenner, R
    Gustafsson, L
    Edling, F
    Kullander, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 466 (01) : 209 - 217