GEODESICS ON RIEMANNIAN STACKS

被引:2
|
作者
Del Hoyo, M. [1 ]
De Melo, M. [2 ]
机构
[1] Univ Fed Fluminense, Dept Geometria, Niteroi, RJ, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos, SP, Brazil
关键词
LIE GROUPOIDS; ORBIT SPACES; LINEARIZATION;
D O I
10.1007/s00031-020-09596-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Metrics on Lie groupoids and differentiable stacks have been introduced recently, extending the Riemannian geometry of manifolds and orbifolds to more general singular spaces. Here we continue that theory, studying stacky curves on Riemannian stacks, measuring their length using stacky metrics, and introducing stacky geodesics. Our main results show that the length of stacky curves measure distances on the orbit space, characterize stacky geodesics as locally minimizing curves, and establish a stacky version of the Hopf-Rinow Theorem. We include a concise overview that bypasses nonessential technicalities, and we lay stress on the examples of orbit spaces of isometric actions and leaf spaces of Riemannian foliations.
引用
收藏
页码:403 / 427
页数:25
相关论文
共 50 条
  • [31] On the existence of homogeneous geodesics in homogeneous Riemannian manifolds
    Kowalski, O
    Szenthe, J
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 209 - 214
  • [32] Regularity results for sub-Riemannian geodesics
    Roberto Monti
    Calculus of Variations and Partial Differential Equations, 2014, 49 : 549 - 582
  • [33] The regularity problem for sub-Riemannian geodesics
    Monti, Roberto
    GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 313 - 332
  • [34] An intrinsic flat limit of Riemannian manifolds with no geodesics
    J. Basilio
    D. Kazaras
    C. Sormani
    Geometriae Dedicata, 2020, 204 : 265 - 284
  • [35] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [36] A Riemannian Plane With Only Two Injective Geodesics
    Bangert, Victor
    Suhr, Stefan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (10) : 8213 - 8229
  • [37] An intrinsic flat limit of Riemannian manifolds with no geodesics
    Basilio, J.
    Kazaras, D.
    Sormani, C.
    GEOMETRIAE DEDICATA, 2020, 204 (01) : 265 - 284
  • [38] NON-HORIZONTAL GEODESICS OF A RIEMANNIAN SUBMERSION
    NAGY, PT
    ACTA SCIENTIARUM MATHEMATICARUM, 1983, 45 (1-4): : 347 - 355
  • [39] INTEGRAL GEOMETRY ON GEODESICS OF ISOTROPIC RIEMANNIAN METRIC
    ROMANOV, VG
    DOKLADY AKADEMII NAUK SSSR, 1978, 241 (02): : 290 - 293
  • [40] Radial kinetic nonholonomic trajectories are Riemannian geodesics!
    Anahory Simoes, Alexandre
    Carlos Marrero, Juan
    Martin de Diego, David
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (04)