GEODESICS ON RIEMANNIAN STACKS

被引:2
|
作者
Del Hoyo, M. [1 ]
De Melo, M. [2 ]
机构
[1] Univ Fed Fluminense, Dept Geometria, Niteroi, RJ, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos, SP, Brazil
关键词
LIE GROUPOIDS; ORBIT SPACES; LINEARIZATION;
D O I
10.1007/s00031-020-09596-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Metrics on Lie groupoids and differentiable stacks have been introduced recently, extending the Riemannian geometry of manifolds and orbifolds to more general singular spaces. Here we continue that theory, studying stacky curves on Riemannian stacks, measuring their length using stacky metrics, and introducing stacky geodesics. Our main results show that the length of stacky curves measure distances on the orbit space, characterize stacky geodesics as locally minimizing curves, and establish a stacky version of the Hopf-Rinow Theorem. We include a concise overview that bypasses nonessential technicalities, and we lay stress on the examples of orbit spaces of isometric actions and leaf spaces of Riemannian foliations.
引用
收藏
页码:403 / 427
页数:25
相关论文
共 50 条
  • [1] GEODESICS ON RIEMANNIAN STACKS
    M. DEL HOYO
    M. DE MELO
    Transformation Groups, 2022, 27 : 403 - 427
  • [2] Counting closed geodesics on Riemannian manifoldsCounting closed geodesics on Riemannian manifoldsE. Eftekhary
    Eaman Eftekhary
    Calculus of Variations and Partial Differential Equations, 2025, 64 (3)
  • [3] Geodesics of Random Riemannian Metrics
    LaGatta, Tom
    Wehr, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 181 - 241
  • [4] Geodesics of Random Riemannian Metrics
    Tom LaGatta
    Jan Wehr
    Communications in Mathematical Physics, 2014, 327 : 181 - 241
  • [5] Escaping geodesics of Riemannian surfaces
    Fernández, JL
    Melián, MV
    ACTA MATHEMATICA, 2001, 187 (02) : 213 - 236
  • [6] GENERALISED GEODESICS IN A RIEMANNIAN SPACE
    SRIVASTAVA, RC
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1967, 53 (01): : 40 - +
  • [7] GEODESICS OF SINGULAR RIEMANNIAN METRICS
    HERMANN, R
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) : 780 - 782
  • [8] A Riemannian approach to Randers geodesics
    Brody, Dorje C.
    Gibbons, Gary W.
    Meier, David M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2016, 106 : 98 - 101
  • [9] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [10] Riemannian metrics on differentiable stacks
    del Hoyo, Matias
    Fernandes, Rui Loja
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 103 - 132