The dimension of the SLE curves

被引:138
作者
Beffara, Vincent [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA, CNRS, UMR 5669, F-69364 Lyon 07, France
关键词
SLE; Hausdorff dimension;
D O I
10.1214/07-AOP364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let gamma be the curve generating a Schramm-Loewner Evolution (SLE) process, with parameter kappa >= 0. We prove that, with probability one, the Hausdorff dimension of gamma is equal to Min(2, 1 + kappa/8).
引用
收藏
页码:1421 / 1452
页数:32
相关论文
共 19 条
[1]  
Bass RF, 1998, PROB APPL S
[2]   Hausdorff dimensions for SLE6 [J].
Beffara, V .
ANNALS OF PROBABILITY, 2004, 32 (3B) :2606-2629
[3]   Two-dimensional critical percolation: The full scaling limit [J].
Camia, Federico ;
Newman, Charles M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) :1-38
[4]   Conformally invariant fractals and potential theory [J].
Duplantier, B .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1363-1367
[5]   Conformal fields, restriction properties, degenerate representations and SLE [J].
Friedrich, R ;
Werner, W .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (11) :947-952
[6]   The asymptotic determinant of the discrete Laplacian [J].
Kenyon, R .
ACTA MATHEMATICA, 2000, 185 (02) :239-286
[7]   Conformal restriction: The chordal [J].
Lawler, G ;
Schramm, O ;
Werner, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) :917-955
[8]  
Lawler GF, 2004, P SYMP PURE MATH, V72, P339
[9]  
Lawler GF, 2004, ANN PROBAB, V32, P939
[10]  
Lawler GF, 2002, PROG PROBAB, V51, P113