r-Whitney numbers of Dowling lattices

被引:90
作者
Cheon, Gi-Sang [1 ]
Jung, Ji-Hwan [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Dowling lattice; Whitney numbers; r-Stirling numbers; Lah numbers; Riordan group; Dowling polynomials; RIORDAN ARRAYS;
D O I
10.1016/j.disc.2012.04.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group of order m >= 1. A Dowling lattice Q(n)(G) is the geometric lattice of rank n over G. In this paper, we define the r-Whitney numbers of the first and second kind over Q(n)(G), respectively. This concept is a common generalization of the Whitney numbers and the r-Stirling numbers of both kinds. We give their combinatorial interpretations over the Dowling lattice and we obtain various new algebraic identities. In addition, we develop the r-Whitney-Lah numbers and the r-Dowling polynomials associated with the Dowling lattice. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2337 / 2348
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 1973, J. Combin. Theory, Ser. B, DOI [10.1016/S0095-8956(73)80007-3, DOI 10.1016/S0095-8956(73)80007-3]
[2]  
[Anonymous], J COMBIN THEORY B
[3]   On Whitney numbers of Dowling lattices [J].
Benoumhani, M .
DISCRETE MATHEMATICS, 1996, 159 (1-3) :13-33
[4]   Log-concavity of Whitney numbers of Dowling lattices [J].
Benoumhani, M .
ADVANCES IN APPLIED MATHEMATICS, 1999, 22 (02) :186-189
[5]   On some numbers related to Whitney numbers of Dowling lattices [J].
Benoumhani, M .
ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (01) :106-116
[6]   THE R-STIRLING NUMBERS [J].
BRODER, AZ .
DISCRETE MATHEMATICS, 1984, 49 (03) :241-259
[7]   A generalization of Lucas polynomial sequence [J].
Cheon, Gi-Sang ;
Kim, Hana ;
Shapiro, Louis W. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) :920-927
[8]   Generalized harmonic numbers with Riordan arrays [J].
Cheon, Gi-Sang ;
El-Mikkawy, M. E. A. .
JOURNAL OF NUMBER THEORY, 2008, 128 (02) :413-425
[9]  
Comtet L., 1974, ADV COMBINATORICS
[10]   A unified approach to polynomial sequences with only real zeros [J].
Liu, Lily L. ;
Wang, Yi .
ADVANCES IN APPLIED MATHEMATICS, 2007, 38 (04) :542-560