Self-consistent Nonlinear Force-Free Field Reconstruction from Weighted Boundary Conditions

被引:3
作者
Mastrano, A. [1 ]
Yang, K. E. [1 ]
Wheatland, M. S. [1 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Active regions; magnetic fields; Magnetic fields; corona; models; SOLAR ACTIVE-REGION; CORONAL MAGNETIC-FIELDS; ENERGY;
D O I
10.1007/s11207-020-01663-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Photospheric vector magnetogram data are often used as boundary conditions for force-free coronal magnetic field extrapolations. In general, however, vector magnetogram data are not consistent with the force-free assumption. In this article, we demonstrate a way to deal with inconsistent boundary data, by generalizing the "self-consistency procedure" of Wheatland and Regnier (Astrophys. J. Lett. 700, L88, 2009). In that procedure, the inconsistency is resolved by an iterative process of constructing two solutions based on the values of the force-free parameter a on the two polarities of the field in the boundary (the P and N polarities), and taking uncertainty-weighted averages of the boundary a values in the P and N solutions. When the a values in the P and N regions are very different, the self-consistent solution may lose high a values from the boundary conditions. We show how, by altering the weighting of the uncertainties in the P or N boundary conditions, we can preserve high a values in the self-consistent solution. The weighted self-consistent extrapolation method is demonstrated on an analytic bipole field and applied to vector magnetogram data taken by the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) spacecraft for NOAA active region AR 12017 on 2014 March 29.
引用
收藏
页数:17
相关论文
共 37 条
  • [1] ALISSANDRAKIS CE, 1981, ASTRON ASTROPHYS, V100, P197
  • [2] Observational constraints on well-posed reconstruction methods and the optimization-Grad-Rubin method
    Amari, T.
    Aly, J. -J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2010, 522
  • [3] Amari T, 1999, ASTRON ASTROPHYS, V350, P1051
  • [4] THE TOPOLOGICAL PROPERTIES OF MAGNETIC HELICITY
    BERGER, MA
    FIELD, GB
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 147 (OCT) : 133 - 148
  • [5] Introduction to magnetic helicity
    Berger, MA
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 : B167 - B175
  • [6] The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches
    Bobra, M. G.
    Sun, X.
    Hoeksema, J. T.
    Turmon, M.
    Liu, Y.
    Hayashi, K.
    Barnes, G.
    Leka, K. D.
    [J]. SOLAR PHYSICS, 2014, 289 (09) : 3549 - 3578
  • [7] Magnetic energy and helicity fluxes at the photospheric level
    Démoulin, P
    Berger, MA
    [J]. SOLAR PHYSICS, 2003, 215 (02) : 203 - 215
  • [8] A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953
    DeRosa, Marc L.
    Schrijver, Carolus J.
    Barnes, Graham
    Leka, K. D.
    Lites, Bruce W.
    Aschwanden, Markus J.
    Amari, Tahar
    Canou, Aurelien
    McTiernan, James M.
    Regnier, Stephane
    Thalmann, Julia K.
    Valori, Gherardo
    Wheatland, Michael S.
    Wiegelmann, Thomas
    Cheung, Mark C. M.
    Conlon, Paul A.
    Fuhrmann, Marcel
    Inhester, Bernd
    Tadesse, Tilaye
    [J]. ASTROPHYSICAL JOURNAL, 2009, 696 (02) : 1780 - 1791
  • [9] Finn J. M., 1985, Comments on Plasma Physics and Controlled Fusion, V9, P111
  • [10] Plasma beta above a solar active region: Rethinking the paradigm
    Gary, GA
    [J]. SOLAR PHYSICS, 2001, 203 (01) : 71 - 86