Harmonic number identities and Hermite-Pade approximations to the logarithm function

被引:31
作者
Chu, W [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat, I-73100 Lecce, Italy
关键词
D O I
10.1016/j.jat.2005.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By decomposing rational functions into partial fractions, we will establish several striking harmonic number identities including the hardest challenges discovered recently by Driver et al. [Pade approximations to the logarithm II: identities, recurrences and symbolic computation, Ramanujan J., 2003, to appear]. As application, we construct explicitly the generalized Hermite-Pade approximants to the logarithm and therefore resolve completely this open problem in the general case. (c) 2005 Elsevier Inc. All fights reserved.
引用
收藏
页码:42 / 56
页数:15
相关论文
共 17 条
[1]  
BAILEY WN, 1935, GENERALIZED HYPERGEO
[2]  
BORWEIN PB, 1985, QUADRATIC HIGHER ORD, V1, P213
[3]  
BORWEIN PB, 1985, QUADRATIC HIGHER ORD, V2, P213
[4]   PARTIAL FRACTIONS AND BILATERAL SUMMATIONS [J].
CHU, WC .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :2036-2042
[5]  
COMTET L, 1974, ADV COMBINATORICS, pCH3
[6]  
Davis P. J, 1975, Interpolation and Approximation
[7]  
DRVER K, IN PRESS RAMANUJAN
[8]  
DRVER K, 2003, IN PRESS RAMANUJAN J
[9]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[10]  
Graham R.L., 1989, Concrete Mathematics