Harmonic number identities and Hermite-Pade approximations to the logarithm function

被引:30
作者
Chu, W [1 ]
机构
[1] Univ Lecce, Dipartimento Matemat, I-73100 Lecce, Italy
关键词
D O I
10.1016/j.jat.2005.07.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By decomposing rational functions into partial fractions, we will establish several striking harmonic number identities including the hardest challenges discovered recently by Driver et al. [Pade approximations to the logarithm II: identities, recurrences and symbolic computation, Ramanujan J., 2003, to appear]. As application, we construct explicitly the generalized Hermite-Pade approximants to the logarithm and therefore resolve completely this open problem in the general case. (c) 2005 Elsevier Inc. All fights reserved.
引用
收藏
页码:42 / 56
页数:15
相关论文
共 17 条
  • [1] BAILEY WN, 1935, GENERALIZED HYPERGEO
  • [2] BORWEIN PB, 1985, QUADRATIC HIGHER ORD, V1, P213
  • [3] BORWEIN PB, 1985, QUADRATIC HIGHER ORD, V2, P213
  • [4] PARTIAL FRACTIONS AND BILATERAL SUMMATIONS
    CHU, WC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) : 2036 - 2042
  • [5] COMTET L, 1974, ADV COMBINATORICS, pCH3
  • [6] Davis P. J, 1975, Interpolation and Approximation
  • [7] DRVER K, IN PRESS RAMANUJAN
  • [8] DRVER K, 2003, IN PRESS RAMANUJAN J
  • [9] Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
  • [10] Graham R.L., 1989, Concrete Mathematics