Time-dependent first integrals, nonlinear dynamical systems, and numerical integration

被引:0
作者
Steeb, WH [1 ]
Scholes, T [1 ]
Hardy, Y [1 ]
机构
[1] Rand Afrikaans Univ, Int Sch Sci Comp, ZA-2006 Auckland Pk, South Africa
关键词
dynamical systems; first integrals; numerical integration;
D O I
10.1007/s10773-005-4833-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many nonlinear dynamical systems expressed as autonomous systems of first-order ordinary differential equations admit first integrals and explicitly time-dependent first integrals. Under numerical integration these first integrals should be preserved. We discuss this case for explicitly time-dependent first integrals.
引用
收藏
页码:1617 / 1620
页数:4
相关论文
共 7 条
[1]  
KOWALSKI K, 1990, CARLEMAN LINEARIZATI
[2]   INTEGRALS OF MOTION FOR THE LORENZ SYSTEM [J].
KUS, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :L689-L691
[3]   Geometric integration using discrete gradients [J].
McLachlan, RI ;
Quispel, GRW ;
Robidoux, N .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :1021-1045
[4]   Integral-preserving integrators [J].
McLaren, DI ;
Quispel, GRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (39) :L489-L495
[5]   CONTINUOUS SYMMETRIES OF THE LORENTZ MODEL AND THE RIKITAKE 2-DISC DYNAMO SYSTEM [J].
STEEB, WH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (08) :L389-L390
[6]  
STEEB WH, 1996, CONTINUOUS SYMMETRIE
[7]  
Steeb WH, 2005, NONLINEAR WORKBOOK C