A synthesis of fluid and thermal transport models for metal foam heat exchangers

被引:289
作者
Mahjoob, Shadi [1 ]
Vafai, Kambiz [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
关键词
D O I
10.1016/j.ijheatmasstransfer.2007.12.012
中图分类号
O414.1 [热力学];
学科分类号
摘要
Metal foam heat exchangers have considerable advantages in thermal management and heat recovery over several commercially available heat exchangers. In this work, the effects of micro structural metal foam properties, such as porosity, pore and fiber diameters, tortuosity, pore density, and relative density, on the heat exchanger performance are discussed. The pertinent correlations in the literature for flow and thermal transport in metal foam heat exchangers are categorized and investigated. Three main categories are synthesized. In the first category, the correlations for pressure drop and heat transfer coefficient based on the microstructural properties of the metal foam are given. In the second category, the correlations are specialized for metal foam tube heat exchangers. In the third category, correlations are specialized for metal foam channel heat exchangers. To investigate the performance of the foam filled heat exchangers in comparison with the plain ones, the required pumping power to overcome the pressure drop and heat transfer rate of foam filled and plain heat exchangers are studied and compared. A performance factor is introduced which includes the effects of both heat transfer rate and pressure drop after inclusion of the metal foam. The results indicate that the performance will be improved substantially when a metal foam is inserted in the tube/channel. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3701 / 3711
页数:11
相关论文
共 68 条
[1]  
Alam MK, 2004, EXP HEAT TRANSFER, V17, P227, DOI [10.1080/08916150490449055, 10.1080/0891615490449055]
[2]   Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media [J].
Alazmi, B ;
Vafai, K .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2004, 126 (03) :389-399
[3]   Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions [J].
Alazmi, B ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (15) :3071-3087
[4]   Analysis of variants within the porous media transport models [J].
Alazmi, B ;
Vafai, K .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (02) :303-326
[5]   Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer [J].
Alazmi, B ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (09) :1735-1749
[6]   NEW EMPIRICAL EQUATIONS FOR SOUND-PROPAGATION IN RIGID FRAME FIBROUS MATERIALS [J].
ALLARD, JF ;
CHAMPOUX, Y .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (06) :3346-3353
[7]   EFFECTS OF BOUNDARY-CONDITIONS ON NON-DARCIAN HEAT-TRANSFER THROUGH POROUS-MEDIA AND EXPERIMENTAL COMPARISONS [J].
AMIRI, A ;
VAFAI, K ;
KUZAY, TM .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1995, 27 (06) :651-664
[8]   Transient analysis of incompressible flow through a packed bed [J].
Amiri, A ;
Vafai, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (24) :4259-4279
[9]   ANALYSIS OF DISPERSION EFFECTS AND NONTHERMAL EQUILIBRIUM, NON-DARCIAN, VARIABLE POROSITY INCOMPRESSIBLE-FLOW THROUGH POROUS-MEDIA [J].
AMIRI, A ;
VAFAI, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1994, 37 (06) :939-954
[10]  
Amiri A., 1998, NONDARCIAN EFFECTS C, P313