Defective 2-colorings of sparse graphs

被引:44
作者
Borodin, O. V. [1 ,2 ]
Kostochka, A. V. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
Defective coloring; Maximum average degree; Improper coloring; EVERY PLANAR MAP; VERTEX DECOMPOSITIONS; MAXIMUM DEGREE; SUBGRAPH; (K;
D O I
10.1016/j.jctb.2013.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is (j, k)-colorable if its vertices can be partitioned into subsets V-1 and V-2 such that every vertex in G[V-1] has degree at most j and every vertex in G[V-2] has degree at most k. We prove that if k >= 2j + 2, then every graph with maximum average degree at most 2(2 - k+2/(j+2)(k+1)) is (j, k)-colorable. On the other hand, we construct graphs with the maximum average degree arbitrarily close to 2(2 - k+2/(j+2)(k+1)) (from above) that are not (j, k)-colorable. In fact, we prove a stronger result by establishing the best possible sufficient condition for the (j, k)-colorability of a graph G in terms of the minimum, phi(j,k)(G), of the difference phi(j,k)(W, G) = (2 - k+2/(j+2)(k+1))vertical bar W vertical bar - vertical bar E(G[W])vertical bar over all subsets W of V(G). Namely, every graph G with phi(j,k)(G) > -1/k+1 is (j, k)-colorable. On the other hand, we construct infinitely many non-(j, k)-colorable graphs G with phi(j,k)(G) = -1/k+1. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 80
页数:9
相关论文
共 10 条
  • [1] EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING
    APPEL, K
    HAKEN, W
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 429 - 490
  • [2] EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY
    APPEL, K
    HAKEN, W
    KOCH, J
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) : 491 - 567
  • [3] (k, 1)-coloring of sparse graphs
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Raspaud, A.
    [J]. DISCRETE MATHEMATICS, 2012, 312 (06) : 1128 - 1135
  • [4] Borodin OV, 2011, SIBERIAN MATH J+, V52, P796
  • [5] (k, j)-coloring of sparse graphs
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Raspaud, A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) : 1947 - 1953
  • [6] Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Ochem, P.
    Raspaud, A.
    [J]. JOURNAL OF GRAPH THEORY, 2010, 65 (02) : 83 - 93
  • [7] Borodin O.V., 2010, Journal of Applied and Indus- trial Mathematics, V4, P21
  • [8] DEFECTIVE COLORINGS OF GRAPHS IN SURFACES - PARTITIONS INTO SUBGRAPHS OF BOUNDED VALENCY
    COWEN, LJ
    COWEN, RH
    WOODALL, DR
    [J]. JOURNAL OF GRAPH THEORY, 1986, 10 (02) : 187 - 195
  • [9] Glebov AN, 2007, SIB ELECTRON MATH RE, V4, P450
  • [10] Improper choosability of graphs and maximum average degree
    Havet, F
    Sereni, JS
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (03) : 181 - 199