Protein-mediated loops in supercoiled DNA create large topological domains

被引:23
作者
Yan, Yan [1 ]
Ding, Yue [1 ]
Leng, Fenfei [2 ]
Dunlap, David [1 ]
Finzi, Laura [1 ]
机构
[1] Emory Univ, Dept Phys, 400 Dowman Dr, Atlanta, GA 30322 USA
[2] Florida Int Univ, Dept Chem & Biochem, Biomol Sci Inst, 11200 SW 8th St, Miami, FL 33199 USA
基金
美国国家卫生研究院;
关键词
TETHERED-PARTICLE MOTION; SINGLE-MOLECULE; ESCHERICHIA-COLI; LAC REPRESSOR; CHROMOSOME ORGANIZATION; CHROMATIN DOMAINS; TRANSCRIPTION; KINETICS; SIGNAL; RNA;
D O I
10.1093/nar/gky153
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over-or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites.
引用
收藏
页码:4417 / 4424
页数:8
相关论文
共 46 条
  • [1] ADHYA S, 1989, ANNU REV GENET, V23, P227, DOI 10.1146/annurev.genet.23.1.227
  • [2] Bacterial Chromosome Organization and Segregation
    Badrinarayanan, Anjana
    Le, Tung B. K.
    Laub, Michael T.
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 31, 2015, 31 : 171 - 199
  • [3] Transcription-induced supercoiling explains formation of self-interacting chromatin domains in S-pombe
    Benedetti, Fabrizio
    Racko, Dusan
    Dorier, Julien
    Burnier, Yannis
    Stasiak, Andrzej
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (17) : 9850 - 9859
  • [4] Effects of supercoiling on enhancer-promoter contacts
    Benedetti, Fabrizio
    Dorier, Julien
    Stasiak, Andrzej
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (16) : 10425 - 10432
  • [5] Do femtonewton forces affect genetic function? A review
    Blumberg, Seth
    Pennington, Matthew W.
    Meiners, Jens-Christian
    [J]. JOURNAL OF BIOLOGICAL PHYSICS, 2006, 32 (02) : 73 - 95
  • [6] Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium
    Champion, Keith
    Higgins, N. Patrick
    [J]. JOURNAL OF BACTERIOLOGY, 2007, 189 (16) : 5839 - 5849
  • [7] Twisting DNA: single molecule studies
    Charvin, G
    Allemand, JF
    Strick, TR
    Bensimon, D
    Croquette, V
    [J]. CONTEMPORARY PHYSICS, 2004, 45 (05) : 383 - 403
  • [8] DNA supercoiling: A regulatory signal for the λ repressor
    Ding, Yue
    Manzo, Carlo
    Fulcrand, Geraldine
    Leng, Fenfei
    Dunlap, David
    Finzi, Laura
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (43) : 15402 - 15407
  • [9] Chromatin Domains: The Unit of Chromosome Organization
    Dixon, Jesse R.
    Gorkin, David U.
    Ren, Bing
    [J]. MOLECULAR CELL, 2016, 62 (05) : 668 - 680
  • [10] Transfer-matrix calculations of DNA polymer micromechanics under tension and torque constraints
    Efremov, Artem K.
    Winardhi, Ricksen S.
    Yan, Jie
    [J]. PHYSICAL REVIEW E, 2016, 94 (03)