Computer simulation of liquid-vapor coexistence of confined quantum fluids

被引:19
|
作者
Trejos, Victor M. [1 ]
Gil-Villegas, Alejandro [1 ]
Martinez, Alejandro [1 ]
机构
[1] Univ Guanajuato, Div Ciencias & Ingn, Guanajuato 37150, Mexico
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 139卷 / 18期
关键词
EQUATION-OF-STATE; RADIAL-DISTRIBUTION FUNCTION; INTEGRAL MONTE-CARLO; 2ND VIRIAL-COEFFICIENT; THERMODYNAMIC PROPERTIES; BINARY-MIXTURES; COLLOIDAL SYSTEMS; PHASE-EQUILIBRIUM; HYDROGEN STORAGE; PATH-INTEGRALS;
D O I
10.1063/1.4829769
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been studied by Monte Carlo computer simulation for particles interacting via a semiclassical effective pair potential V-eff (r) = V-LJ + V-Q, where V-LJ is the Lennard-Jones 12-6 potential (LJ) and V-Q is the first-order Wigner-Kirkwood (WK-1) quantum potential, that depends on beta = 1/kT and de Boer's quantumness parameter Lambda = h/sigma root m epsilon, where k and h are the Boltzmann's and Planck's constants, respectively, m is the particle's mass, T is the temperature of the system, and sigma and epsilon are the LJ potential parameters. The non-conformal properties of the system of particles interacting via the effective pair potential V-eff (r) are due to Lambda, since the LV phase diagram is modified by varying Lambda. We found that the WK-1 system gives an accurate description of the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel hard walls separated by a distance L-p, within the range 2 sigma <= L-p <= 6 sigma. The critical temperature of the system is reduced by decreasing L-p and increasing Lambda, and the liquid-vapor transition is not longer observed for L-p/sigma < 2, in contrast to what has been observed for the classical system. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Liquid-vapor phase equilibrium of a simple liquid confined in a random porous media: Second-order Barker-Henderson perturbation theory and scaled particle theory
    Nelson, A. K.
    Kalyuzhnyi, Y. V.
    Patsahan, T.
    McCabe, C.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 300
  • [22] Molecular dynamics study on the liquid-vapor interfacial profiles
    Wang, ZJ
    Chen, M
    Guo, ZY
    Yang, C
    FLUID PHASE EQUILIBRIA, 2001, 183 (183-184) : 321 - 329
  • [23] Computer simulation of liquid metals
    Belashchenko, D. K.
    PHYSICS-USPEKHI, 2013, 56 (12) : 1176 - 1216
  • [24] Thermodynamic Derivation of Scaling at the Liquid-Vapor Critical Point
    Obeso-Jureidini, Juan Carlos
    Olascoaga, Daniela
    Romero-Rochin, Victor
    ENTROPY, 2021, 23 (06)
  • [25] Temperature and Density on the Forsterite Liquid-Vapor Phase Boundary
    Davies, E. J.
    Duncan, M. S.
    Root, S.
    Kraus, R. G.
    Spaulding, D. K.
    Jacobsen, S. B.
    Stewart, S. T.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2021, 126 (04)
  • [26] Thermodynamic properties of the two higher fullerites C70 and C96 along the liquid-vapor coexistence curve
    Khedr, M. Bahaa
    Osman, S. M.
    PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5), 2011, 1370
  • [27] Self-diffusion and structural properties of confined fluids in dynamic coexistence
    de Sousa, N.
    Saenz, J. J.
    Scheffold, Frank
    Garcia-Martin, A.
    Froufe-Perez, L. S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (13)
  • [28] Equations for Describing Liquid-Vapor Phase Equilibria in Binary Mixtures
    Vasserman, A. A.
    Slyn'ko, A. G.
    Galkin, V. N.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 88 (12) : 2042 - 2045
  • [29] Effect of the Thermocouple on Measuring the Temperature Discontinuity at a Liquid-Vapor Interface
    Kazemi, Mohammad Amin
    Nobes, David S.
    Elliott, Janet A. W.
    LANGMUIR, 2017, 33 (28) : 7169 - 7180
  • [30] A Study of Liquid-Vapor Phase Equilibrium in Binary Organic Mixtures
    N. N. Gorlova
    T. M. Gredneva
    S. A. Vasil'eva
    L. V. Polyakova
    L. F. Komarova
    Russian Journal of Applied Chemistry, 2001, 74 : 1285 - 1288